Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 9/2015

01.09.2015

The effect of carbonization temperature on the electrocatalytic performance of nitrogen-doped porous carbon as counter electrode of dye-sensitized solar cells

verfasst von: Juan Zhang, Shuai Kuang, Siming Nian, Guiqiang Wang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 9/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nitrogen-doped porous carbons (NPC) prepared by direct carbonization of nitrogen-containing polymer were investigated as the counter electrode of dye-sensitized solar cells. The effect of carbonization temperature on the electrocatalytic performance of NPC electrode was discussed. The nitrogen content reasonably decreased with the increase of carbonization temperature for NPC samples. However, the electrocatalytic activity of NPC electrode did not follow the same trend. As carbonization temperature increased from 700 to 800 °C, the charge-transfer resistance of NPC electrode decreased from 8.07 to 1.77 Ω cm2. With further increasing carbonization temperature from 800 to 900 °C, the charge-transfer resistance of NPC electrode increased from 1.77 to 5.08 Ω cm2. X-ray photoelectron spectroscopy analysis identified three kinds of nitrogen in as-prepared NPC, including pyridinic, pyrrolic, and quaternary nitrogen. With the increase of carbonization temperature, the content of pyridinic and pyrrolic nitrogen decreased, while the content of quaternary nitrogen increased. Pyridinic and pyrrolic nitrogen could create the electrocatalytic active sites in NPC, while quaternary nitrogen could improve the electron transfer through NPC. Therefore, the proper ratio among different nitrogen states has a significant effect on the electrolcatalytic activity of NPC. The NPC prepared at moderate carbonization temperature of 800 °C exhibited a superior electrolcatalytic activity because it possessed both relatively higher content of pyridinic nitrogen and higher content of quaternary nitrogen.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Yella, H. Lee, H. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W. Diau, S.M. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cell with Cobalt (II/III) based redox electrolyte exceed 12 % efficiency. Science 334, 629–634 (2011)CrossRef A. Yella, H. Lee, H. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W. Diau, S.M. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cell with Cobalt (II/III) based redox electrolyte exceed 12 % efficiency. Science 334, 629–634 (2011)CrossRef
2.
Zurück zum Zitat M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001)CrossRef M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001)CrossRef
3.
Zurück zum Zitat B. O’Regan, M. Grätzel, A low-cost high efficiency solar cell based on dye-sensitized colloidal TiO2 film. Nature 353, 737–740 (1991)CrossRef B. O’Regan, M. Grätzel, A low-cost high efficiency solar cell based on dye-sensitized colloidal TiO2 film. Nature 353, 737–740 (1991)CrossRef
4.
Zurück zum Zitat N. Papageorgiou, Counter-electrode function in nanocrystalline photoelectrochemical cells configurations. Coord. Chem. Rev. 248, 1421–1446 (2004)CrossRef N. Papageorgiou, Counter-electrode function in nanocrystalline photoelectrochemical cells configurations. Coord. Chem. Rev. 248, 1421–1446 (2004)CrossRef
5.
Zurück zum Zitat N. Fu, Y. Fang, Y. Duan, X. Zhou, X. Xiao, Y. Lin, High performance plastic platinized counter electrode via photoplatinization technique for flexible dye-sensitized solar cells. ACS Nano 6, 9596–9605 (2011)CrossRef N. Fu, Y. Fang, Y. Duan, X. Zhou, X. Xiao, Y. Lin, High performance plastic platinized counter electrode via photoplatinization technique for flexible dye-sensitized solar cells. ACS Nano 6, 9596–9605 (2011)CrossRef
6.
Zurück zum Zitat E. Olsen, G. Hagen, S. Lindquist, Dissolution of platinum in methoxy propionitrile containing LiI/I2. Sol. Energy Mater. Sol. Cell 63, 267–273 (2000)CrossRef E. Olsen, G. Hagen, S. Lindquist, Dissolution of platinum in methoxy propionitrile containing LiI/I2. Sol. Energy Mater. Sol. Cell 63, 267–273 (2000)CrossRef
7.
Zurück zum Zitat T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, P. Comte, M. Grätzel, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc. 153, A2255–A2261 (2006)CrossRef T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, P. Comte, M. Grätzel, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc. 153, A2255–A2261 (2006)CrossRef
8.
Zurück zum Zitat J. Han, H. Kim, D. Kim, S. Jo, S. Jang, Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin film for efficient counter electrode of dye-sensitized solar cells. ACS Nano 4, 3503–3509 (2010)CrossRef J. Han, H. Kim, D. Kim, S. Jo, S. Jang, Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin film for efficient counter electrode of dye-sensitized solar cells. ACS Nano 4, 3503–3509 (2010)CrossRef
9.
Zurück zum Zitat P. Joshi, L. Zhang, Q. Chen, D. Galipeau, H. Fong, Q. Qiao, Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2, 3572–3577 (2010)CrossRef P. Joshi, L. Zhang, Q. Chen, D. Galipeau, H. Fong, Q. Qiao, Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2, 3572–3577 (2010)CrossRef
10.
Zurück zum Zitat M. Wu, X. Lin, T. Wang, J. Qiu, T. Ma, Low-cost dye-sensitized solar cells based on nine kinds of carbon counter electrodes. Energy Environ. Sci. 4, 2308–2315 (2011)CrossRef M. Wu, X. Lin, T. Wang, J. Qiu, T. Ma, Low-cost dye-sensitized solar cells based on nine kinds of carbon counter electrodes. Energy Environ. Sci. 4, 2308–2315 (2011)CrossRef
11.
Zurück zum Zitat J. Xia, L. Chen, S. Yanagida, Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. J. Mater. Chem. 21, 4644–4649 (2011)CrossRef J. Xia, L. Chen, S. Yanagida, Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. J. Mater. Chem. 21, 4644–4649 (2011)CrossRef
12.
Zurück zum Zitat J.M. Pringle, V. Armel, D.R. MacFarlane, Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells. Chem. Commun. 46, 5367–5369 (2010)CrossRef J.M. Pringle, V. Armel, D.R. MacFarlane, Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells. Chem. Commun. 46, 5367–5369 (2010)CrossRef
13.
Zurück zum Zitat J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, S. Hao, High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. J. Power Sources 181, 172–176 (2008)CrossRef J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, S. Hao, High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. J. Power Sources 181, 172–176 (2008)CrossRef
14.
Zurück zum Zitat Y. Luo, J. Shen, R. Cheng, X. Chen, Y. Chen, X.Z. Sun, X. Huang, Facile synthesis of mixed-phase cobalt sulfide counter electrodes for efficient dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 26, 42–48 (2015) Y. Luo, J. Shen, R. Cheng, X. Chen, Y. Chen, X.Z. Sun, X. Huang, Facile synthesis of mixed-phase cobalt sulfide counter electrodes for efficient dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 26, 42–48 (2015)
15.
Zurück zum Zitat C. Kung, H. Chen, C. Lin, CoS Acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cells. ACS Nano 6, 7016–7025 (2012)CrossRef C. Kung, H. Chen, C. Lin, CoS Acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cells. ACS Nano 6, 7016–7025 (2012)CrossRef
16.
Zurück zum Zitat M. Wu, Y. Wang, X. Lin, T. Ma, Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys. 13, 19298–19301 (2011)CrossRef M. Wu, Y. Wang, X. Lin, T. Ma, Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys. 13, 19298–19301 (2011)CrossRef
17.
Zurück zum Zitat Q. Jiang, J. Li, X. Gao, Highly ordered TiN nanotube arrays as counter electrode of dye-sensitized solar cells. Chem. Commun. 45, 6720–6722 (2009)CrossRef Q. Jiang, J. Li, X. Gao, Highly ordered TiN nanotube arrays as counter electrode of dye-sensitized solar cells. Chem. Commun. 45, 6720–6722 (2009)CrossRef
18.
Zurück zum Zitat Y. Duan, Q. Tang, J. Liu, B. He, L. Yu, Transparent metal selenide alloy counter electrode for high-efficiency bifacial dye-sensitized solar cells. Angew. Chem. Int. Ed. 53, 14569–14574 (2014)CrossRef Y. Duan, Q. Tang, J. Liu, B. He, L. Yu, Transparent metal selenide alloy counter electrode for high-efficiency bifacial dye-sensitized solar cells. Angew. Chem. Int. Ed. 53, 14569–14574 (2014)CrossRef
19.
Zurück zum Zitat J. Dong, J. Wu, M. Zheng, J. Huo, Y. Tu, Z. Lan, Petal-like cobalt selenide nanosheet as counter electrode in high efficient dye-sensitized solar cells. J. Mater.: Sci. Mater. Electron. 26, 2501–2507 (2015) J. Dong, J. Wu, M. Zheng, J. Huo, Y. Tu, Z. Lan, Petal-like cobalt selenide nanosheet as counter electrode in high efficient dye-sensitized solar cells. J. Mater.: Sci. Mater. Electron. 26, 2501–2507 (2015)
20.
Zurück zum Zitat F. Gong, H. Wang, X. Xu, G. Zhou, Z. Wang, In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 134, 10953–10958 (2012)CrossRef F. Gong, H. Wang, X. Xu, G. Zhou, Z. Wang, In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 134, 10953–10958 (2012)CrossRef
21.
Zurück zum Zitat G. Wang, W. Xing, S. Zhuo, Application of mesoporous carbon to counter electrode for dye-sensitized solar cells. J. Power Source 194, 568–573 (2009)CrossRef G. Wang, W. Xing, S. Zhuo, Application of mesoporous carbon to counter electrode for dye-sensitized solar cells. J. Power Source 194, 568–573 (2009)CrossRef
22.
Zurück zum Zitat E. Ramasamy, J. Lee, Large-pore sized mesoporous carbon electrocatalyst for efficient dye-sensitized solar cells. Chem. Commun. 46, 2136–2138 (2010)CrossRef E. Ramasamy, J. Lee, Large-pore sized mesoporous carbon electrocatalyst for efficient dye-sensitized solar cells. Chem. Commun. 46, 2136–2138 (2010)CrossRef
23.
Zurück zum Zitat S. Park, H. Jung, B. Kim, W. Lee, MWCNT/mesoporous carbon nanofibers composites prepared by electrospinning and silica template as counter electrodes for dye-sensitized solar cells. J. Photochem. Photobio. A Chem. 246, 45–49 (2012)CrossRef S. Park, H. Jung, B. Kim, W. Lee, MWCNT/mesoporous carbon nanofibers composites prepared by electrospinning and silica template as counter electrodes for dye-sensitized solar cells. J. Photochem. Photobio. A Chem. 246, 45–49 (2012)CrossRef
24.
Zurück zum Zitat L. Kavan, J. Yum, M. Gratzel, Graphene nanoplatelets outperforming platinum as the electrocatalyst in Co-bipyridine mediated dye-sensitized solar cells. Nano Lett. 11, 5501–5506 (2011)CrossRef L. Kavan, J. Yum, M. Gratzel, Graphene nanoplatelets outperforming platinum as the electrocatalyst in Co-bipyridine mediated dye-sensitized solar cells. Nano Lett. 11, 5501–5506 (2011)CrossRef
25.
Zurück zum Zitat D. Yu, E. Nagelli, F. Du, L. Dai, Metal-free carbon nanomaterials become more active than metal catalyst and last longer. J. Phys. Chem. Lett. 1, 2165–2173 (2010)CrossRef D. Yu, E. Nagelli, F. Du, L. Dai, Metal-free carbon nanomaterials become more active than metal catalyst and last longer. J. Phys. Chem. Lett. 1, 2165–2173 (2010)CrossRef
26.
Zurück zum Zitat H. Fang, C. Yu, T. Ma, J. Qiu, Boron-doped graphene as high-efficiency counter electrode for dye-sensitized solar cells. Chem. Comm. 50, 3328–3330 (2014)CrossRef H. Fang, C. Yu, T. Ma, J. Qiu, Boron-doped graphene as high-efficiency counter electrode for dye-sensitized solar cells. Chem. Comm. 50, 3328–3330 (2014)CrossRef
27.
Zurück zum Zitat G. Wang, S. Kuang, D. Wang, S. Zhuo, Nitrogen-doped mesoporous carbon as low-cost counter electrode for high efficiency dye-sensitized solar cells. Electrochim. Acta 113, 346–353 (2013)CrossRef G. Wang, S. Kuang, D. Wang, S. Zhuo, Nitrogen-doped mesoporous carbon as low-cost counter electrode for high efficiency dye-sensitized solar cells. Electrochim. Acta 113, 346–353 (2013)CrossRef
28.
Zurück zum Zitat B. Xu, H. Duan, M. Chu, G. Cao, Y. Yang, Facile synthesis of nitrogen-doped porous carbon for supercapacitors. J. Mater. Chem. A 1, 4565–4570 (2013)CrossRef B. Xu, H. Duan, M. Chu, G. Cao, Y. Yang, Facile synthesis of nitrogen-doped porous carbon for supercapacitors. J. Mater. Chem. A 1, 4565–4570 (2013)CrossRef
29.
Zurück zum Zitat L. Chen, X. Zhang, H. Liang, M. Kong, Q. Guan, P. Chen, Z. Wu, S. Yu, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercatacitors. ACS Nano 6, 7092–7102 (2012)CrossRef L. Chen, X. Zhang, H. Liang, M. Kong, Q. Guan, P. Chen, Z. Wu, S. Yu, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercatacitors. ACS Nano 6, 7092–7102 (2012)CrossRef
30.
Zurück zum Zitat D. Shin, B. Jeong, B. Mun, H. Jeon, H. Shin, J. Baik, J. Lee, On the origin of electrocatalytic oxygen reduction reaction on electron nitrogen-carbon species. J. Phys. Chem. C 117, 11619–11624 (2013)CrossRef D. Shin, B. Jeong, B. Mun, H. Jeon, H. Shin, J. Baik, J. Lee, On the origin of electrocatalytic oxygen reduction reaction on electron nitrogen-carbon species. J. Phys. Chem. C 117, 11619–11624 (2013)CrossRef
31.
Zurück zum Zitat F. Su, C. Poh, J. Chen, G. Xu, D. Wang, Q. Li, J. Lin, X. Lou, Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 4, 717–724 (2011)CrossRef F. Su, C. Poh, J. Chen, G. Xu, D. Wang, Q. Li, J. Lin, X. Lou, Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 4, 717–724 (2011)CrossRef
32.
Zurück zum Zitat J. Roy-Mayhew, D. Bozym, C. Punckt, I. Aksay, Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4, 6203–6211 (2010)CrossRef J. Roy-Mayhew, D. Bozym, C. Punckt, I. Aksay, Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4, 6203–6211 (2010)CrossRef
33.
Zurück zum Zitat T. Murakami, M. Grätzel, Counter electrodes for DSCs: application of functional materials as catalysts. Inorg. Chem. Acta 361, 572–580 (2008)CrossRef T. Murakami, M. Grätzel, Counter electrodes for DSCs: application of functional materials as catalysts. Inorg. Chem. Acta 361, 572–580 (2008)CrossRef
34.
Zurück zum Zitat Y. Xue, J. Liu, H. Chen, R. Wang, D. Li, J. Qu, L. Dai, Nitrogen-doped graphene foam as metal-free counter electrodes for high-performance dye-sensitized solar cells. Angew. Chem. Int. Ed. 51, 12124–12127 (2012)CrossRef Y. Xue, J. Liu, H. Chen, R. Wang, D. Li, J. Qu, L. Dai, Nitrogen-doped graphene foam as metal-free counter electrodes for high-performance dye-sensitized solar cells. Angew. Chem. Int. Ed. 51, 12124–12127 (2012)CrossRef
35.
Zurück zum Zitat D. Hulicova-Jurcakova, M. Seredych, G. Lu, T. Bandosz, Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19, 438–447 (2009)CrossRef D. Hulicova-Jurcakova, M. Seredych, G. Lu, T. Bandosz, Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19, 438–447 (2009)CrossRef
Metadaten
Titel
The effect of carbonization temperature on the electrocatalytic performance of nitrogen-doped porous carbon as counter electrode of dye-sensitized solar cells
verfasst von
Juan Zhang
Shuai Kuang
Siming Nian
Guiqiang Wang
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 9/2015
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-3309-4

Weitere Artikel der Ausgabe 9/2015

Journal of Materials Science: Materials in Electronics 9/2015 Zur Ausgabe

Neuer Inhalt