Skip to main content
Erschienen in: Physics of Metals and Metallography 9/2022

01.09.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Effect of Electropulsing-Assisted Ultrasonic Impact Treatment on the Microstructure, Phase Composition, and Microhardness of Electron-Beam-Welded 3D Printed Ti–6Al–4V Alloy

verfasst von: O. B. Perevalova, A. V. Panin, E. N. Boyangin, S. A. Martynov

Erschienen in: Physics of Metals and Metallography | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

X-ray diffraction analysis and transmission electron microscopy have shown the formation of a gradient structure in surface layers during electropulsing-assisted ultrasonic impact treatment (EAUIT) of a weld in Ti–6Al–4V alloy samples prepared by the electron-beam wire additive technology. In particular, nanocrystalline titanium and titanium–iron oxides, and amorphous and nanocrystalline α-phase structures form at a depth of 1–2 µm; a nanocrystalline structure in layers with β + α" and α + β-phases forms at a depth of 2 to 10 µm; and submicro and microcrystalline α-phase structures, at a depth of more than 10 µm. EAUIT of the metal in the weld zone causes iron alloying of 1–2 µm surface layers and increases the microhardness due to an increase in the grain boundary contribution to the hardening due to nanocrystalline and submicro and microcrystalline structure formation in α- and β-phases during processing and hardening due to the precipitation of nanocrystalline titanium–iron oxide and α"-phases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. N. Rykalin, A. A. Uglov, I. V. Zuev, and A. N. Kokora, Laser and Electron Beam Treatment of Materials. Handbook (Mashinostroenie, Moscow, 1985) [in Russian]. N. N. Rykalin, A. A. Uglov, I. V. Zuev, and A. N. Kokora, Laser and Electron Beam Treatment of Materials. Handbook (Mashinostroenie, Moscow, 1985) [in Russian].
2.
Zurück zum Zitat V. P. Kulikov, Technology of Melt Welding and Thermal Cutting (Novoe znanie, Minsk, 2016) [in Russian]. V. P. Kulikov, Technology of Melt Welding and Thermal Cutting (Novoe znanie, Minsk, 2016) [in Russian].
3.
Zurück zum Zitat V. P. Sidorov and A. V. Mel’zitdinova, Electron Beam Welding. Technological Features and Equipment (TSU, Tolyatti, 2013) [in Russian]. V. P. Sidorov and A. V. Mel’zitdinova, Electron Beam Welding. Technological Features and Equipment (TSU, Tolyatti, 2013) [in Russian].
4.
Zurück zum Zitat E. N. Boyangin, O. B. Perevalova, A. V. Panin, and S. A. Martynov, “The effect of electron beam welding on the microstructure and microhardness of 3d-printed products from titanium alloy Ti–6Al–4V,” Phys. Met. Metallogr. 122 (2), 141–147 (2021).CrossRef E. N. Boyangin, O. B. Perevalova, A. V. Panin, and S. A. Martynov, “The effect of electron beam welding on the microstructure and microhardness of 3d-printed products from titanium alloy Ti–6Al–4V,” Phys. Met. Metallogr. 122 (2), 141–147 (2021).CrossRef
5.
Zurück zum Zitat Ultrasonic Treatment of Structural Materials Ed. by A. V. Panina (TSU, Tomsk, 2016) [in Russian]. Ultrasonic Treatment of Structural Materials Ed. by A. V. Panina (TSU, Tomsk, 2016) [in Russian].
6.
Zurück zum Zitat L. M. Lobanov, N. A. Pashchin, V. P. Loginov, and A. G. Poklyatskii, “Influence of electric pulse processing on the residual shape change of thin-sheet welded structures (Review),” Avtomat. Svarka, No. 3, 13–17 (2010). L. M. Lobanov, N. A. Pashchin, V. P. Loginov, and A. G. Poklyatskii, “Influence of electric pulse processing on the residual shape change of thin-sheet welded structures (Review),” Avtomat. Svarka, No. 3, 13–17 (2010).
7.
Zurück zum Zitat V. E. Panin, S. V. Panin, Yu. I. Pochivalov, A. S. Smirnov, and A. V. Eremin, “Structural scale levels of plastic deformation and fracture of high-strength titanium alloy welds,” Phys. Mesomech. 21, 464–474 (2018).CrossRef V. E. Panin, S. V. Panin, Yu. I. Pochivalov, A. S. Smirnov, and A. V. Eremin, “Structural scale levels of plastic deformation and fracture of high-strength titanium alloy welds,” Phys. Mesomech. 21, 464–474 (2018).CrossRef
8.
Zurück zum Zitat L. Yang, W. Dongpo, D. Caiyan, H. Lixing, W. Lijun, and C. Shu, “Feasibility study on preparation of coatings on Ti–6Al–4V by combined ultrasonic impact treatment and electrospark deposition,” Mater. Des. 63, 488–492 (2014).CrossRef L. Yang, W. Dongpo, D. Caiyan, H. Lixing, W. Lijun, and C. Shu, “Feasibility study on preparation of coatings on Ti–6Al–4V by combined ultrasonic impact treatment and electrospark deposition,” Mater. Des. 63, 488–492 (2014).CrossRef
9.
Zurück zum Zitat O. B. Perevalova, A. V. Panin, and E. N. Boyangin, “Effect of surface electropulsing assisted ultrasonic impact treatment on the microstructure, phase composition, and microhardness of 3D printed Ti–6Al–4V alloy,” Phys. Met. Metallogr. 122 (7), 688–695 (2021).CrossRef O. B. Perevalova, A. V. Panin, and E. N. Boyangin, “Effect of surface electropulsing assisted ultrasonic impact treatment on the microstructure, phase composition, and microhardness of 3D printed Ti–6Al–4V alloy,” Phys. Met. Metallogr. 122 (7), 688–695 (2021).CrossRef
10.
Zurück zum Zitat P. G. Agraval, L. A. Dreval’, and M. A. Turchanin, “Thermodynamic properties of iron melts with titanium, zirconium, hafnium,” Poroshkovaya Metallurgiya 11/12, 93–104 (2021). P. G. Agraval, L. A. Dreval’, and M. A. Turchanin, “Thermodynamic properties of iron melts with titanium, zirconium, hafnium,” Poroshkovaya Metallurgiya 11/12, 93–104 (2021).
11.
Zurück zum Zitat I. W. Donald and H. A. Davies, “Prediction of glass-forming ability for metallic systems,” J. Non-Cryst. Solids 30 (1), 77–85 (1978).CrossRef I. W. Donald and H. A. Davies, “Prediction of glass-forming ability for metallic systems,” J. Non-Cryst. Solids 30 (1), 77–85 (1978).CrossRef
12.
Zurück zum Zitat R. Adelfar, H. Mirzaden, A. Ataie, and M. Malekan, “Crystallization kinetics of mechanically alloyed amorphous Fe–Ti alloys during annealing,” Adv. Powder Technol. 31 (8), 3215–3221 (2020).CrossRef R. Adelfar, H. Mirzaden, A. Ataie, and M. Malekan, “Crystallization kinetics of mechanically alloyed amorphous Fe–Ti alloys during annealing,” Adv. Powder Technol. 31 (8), 3215–3221 (2020).CrossRef
13.
Zurück zum Zitat M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, “Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy,” Acta Mater. 103, 761–774 (2016).CrossRef M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, “Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy,” Acta Mater. 103, 761–774 (2016).CrossRef
14.
Zurück zum Zitat F. C. Li, T. Liu, J. Y. Zhang, S. Shuang, Q. Wang, A. D. Wang, and J. G. Wang, “Amorphous-nanocrystalline alloys: fabrication, properties and applications,” Mater. Today Adv. 4, 1–20 (2019). F. C. Li, T. Liu, J. Y. Zhang, S. Shuang, Q. Wang, A. D. Wang, and J. G. Wang, “Amorphous-nanocrystalline alloys: fabrication, properties and applications,” Mater. Today Adv. 4, 1–20 (2019).
15.
Zurück zum Zitat G. L. Sorger, J. P. Oliveira, P. L. Inacio, N. Enzinger, P. Vilaca, R. M. Miranda, and T. G. Santos, “Non-destructive microstructural analysis by electrical conductivity: comparison with hardness measurements in different materials,” J. Mater. Sci. Technol. 35, 360–368 (2019).CrossRef G. L. Sorger, J. P. Oliveira, P. L. Inacio, N. Enzinger, P. Vilaca, R. M. Miranda, and T. G. Santos, “Non-destructive microstructural analysis by electrical conductivity: comparison with hardness measurements in different materials,” J. Mater. Sci. Technol. 35, 360–368 (2019).CrossRef
16.
Zurück zum Zitat A. Panin, M. Kazachenok, O. Perevalova, S. Martynov, A. Panina, and E. Sklyarova, “Continuous electron beam post-treatment of EBF3-fabricated Ti–6Al–4V parts,” Metals 9 (6), 699–715 (2019).CrossRef A. Panin, M. Kazachenok, O. Perevalova, S. Martynov, A. Panina, and E. Sklyarova, “Continuous electron beam post-treatment of EBF3-fabricated Ti–6Al–4V parts,” Metals 9 (6), 699–715 (2019).CrossRef
17.
Zurück zum Zitat S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X‑ray diffraction and Electron Optical Analysis (Metallurgiya, Moscow, 1970). S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X‑ray diffraction and Electron Optical Analysis (Metallurgiya, Moscow, 1970).
18.
Zurück zum Zitat L. L. Meisner, A. B. Markov, V. P. Rotshtein, G. E. Ozur, S. N. Meisner, E. V. Yakovlev, V. O. Semin, Yu. P. Mironov, T. M. Poletika, S. L. Girsova, and D. A. Shepel, “Microstructural characterization of Ti–Ta-based surface alloy fabricated on TiNi SMA by additive pulsed electron-beam melting of film/substrate system,” J. Alloys Compd. 730, 376–385 (2018).CrossRef L. L. Meisner, A. B. Markov, V. P. Rotshtein, G. E. Ozur, S. N. Meisner, E. V. Yakovlev, V. O. Semin, Yu. P. Mironov, T. M. Poletika, S. L. Girsova, and D. A. Shepel, “Microstructural characterization of Ti–Ta-based surface alloy fabricated on TiNi SMA by additive pulsed electron-beam melting of film/substrate system,” J. Alloys Compd. 730, 376–385 (2018).CrossRef
19.
Zurück zum Zitat K. Sumiyama, H. Ezawa, and Y. Nakamura, “Metastable Fe1 – xTix alloys produced by vapor quenching,” Phys. Status Solidi 93 (1), 81–86 (1986).CrossRef K. Sumiyama, H. Ezawa, and Y. Nakamura, “Metastable Fe1 – xTix alloys produced by vapor quenching,” Phys. Status Solidi 93 (1), 81–86 (1986).CrossRef
20.
Zurück zum Zitat H. Shin, M. Agarwal, M. R. De Guire, and A. H. Heuer, “Solid-state diffusive amorphization in TiO2/ZrO2 bilayers,” J. Am. Ceram. Soc. 79 (7), 1975–1978 (1996).CrossRef H. Shin, M. Agarwal, M. R. De Guire, and A. H. Heuer, “Solid-state diffusive amorphization in TiO2/ZrO2 bilayers,” J. Am. Ceram. Soc. 79 (7), 1975–1978 (1996).CrossRef
21.
Zurück zum Zitat O. B. Perevalova, A. V. Panin, M. S. Kazachenok, and E. A. Sinyakova, “Effect of ultrasonic impact treatment on structural phase transformations in Ti–6Al–4V titanium alloy,” Phys. Mesomech. 25 (1), 66–77 (2022).CrossRef O. B. Perevalova, A. V. Panin, M. S. Kazachenok, and E. A. Sinyakova, “Effect of ultrasonic impact treatment on structural phase transformations in Ti–6Al–4V titanium alloy,” Phys. Mesomech. 25 (1), 66–77 (2022).CrossRef
Metadaten
Titel
The Effect of Electropulsing-Assisted Ultrasonic Impact Treatment on the Microstructure, Phase Composition, and Microhardness of Electron-Beam-Welded 3D Printed Ti–6Al–4V Alloy
verfasst von
O. B. Perevalova
A. V. Panin
E. N. Boyangin
S. A. Martynov
Publikationsdatum
01.09.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 9/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22090101

Weitere Artikel der Ausgabe 9/2022

Physics of Metals and Metallography 9/2022 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Fine Structure of MgB2 Alloyed with Y and Gd