Skip to main content
Erschienen in: Cellulose 3/2015

01.06.2015 | Original Paper

The effect of fibril length and architecture on the accessibility of reducing ends of cellulose Iα to Trichoderma reesei Cel7A

verfasst von: Patrick J. O’Dell, Akshata R. Mudinoor, Sanjai J. Parikh, Tina Jeoh

Erschienen in: Cellulose | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The origin of the recalcitrance of cellulose fibrils to enzymatic hydrolysis is still poorly understood. In this study we examined the role of cellulose fibril lengths and fibril architecture, i.e. the fibrillar structure from lateral association of cellulose microfibrils, on the accessibility to a reducing-end specific cellobiohydrolase, Trichoderma reesei Cel7A (TrCel7A). Cellulose Iα fibrils from Gluconacetobacter xylinus and Cladophora aegagropila showed contrasting digestibility by TrCel7A. Where the bacterial cellulose (BC) fibrils from G. xylinus were rapidly hydrolyzed to near completion by TrCel7A (>99 %) in 120 h, under identical reaction conditions, TrCel7A hydrolysis of the algal cellulose (AC) fibrils from C. aegagropila was slow and limited (~30 %). Mechanically decreasing fibril lengths and increasing average reducing end concentrations by high intensity ultrasonication did not affect the hydrolysis rates of either BC or AC by TrCel7A. Moreover, ultrasonicated AC remained significantly less digestible by TrCel7A than BC despite higher available reducing-end concentrations. In contrast to previous observations of extensive fibrillation of BC by TrCel7A hydrolysis, AC fibrils subjected to hydrolysis by TrCel7A remained associated. The hydrolysis of AC fibrils by TrCel7A roughened the topography of the fibril surfaces in a manner suggesting erosion of microfibrils at the fibril surface. We speculate that the compact cross-sections of the AC microfibrils result in tightly associated fibrils that hinder enzyme access to available reducing ends while the flat, ribbon cross section of the BC microfibrils result in more loosely associated fibrils that more easily dissociate during hydrolysis to improve accessibility and overall digestibility by TrCel7A.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Akerholm M, Salmen L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969CrossRef Akerholm M, Salmen L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969CrossRef
Zurück zum Zitat Atalla RH, Vanderhart DL (1984) Native cellulose—a composite of 2 distinct crystalline forms. Science 223:283–285CrossRef Atalla RH, Vanderhart DL (1984) Native cellulose—a composite of 2 distinct crystalline forms. Science 223:283–285CrossRef
Zurück zum Zitat Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization—relation to polyphase structure of cellulose fibers. Ind Eng Chem 48:333–335. doi:10.1021/ie50554a046 CrossRef Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization—relation to polyphase structure of cellulose fibers. Ind Eng Chem 48:333–335. doi:10.​1021/​ie50554a046 CrossRef
Zurück zum Zitat Briois B, Saito T, Petrier C, Putaux JL, Nishiyama Y, Heux L, Molina-Boisseau S (2013) I-alpha ->I-beta transition of cellulose under ultrasonic radiation. Cellulose 20:597–603. doi:10.1007/s10570-013-9866-x CrossRef Briois B, Saito T, Petrier C, Putaux JL, Nishiyama Y, Heux L, Molina-Boisseau S (2013) I-alpha ->I-beta transition of cellulose under ultrasonic radiation. Cellulose 20:597–603. doi:10.​1007/​s10570-013-9866-x CrossRef
Zurück zum Zitat Brown RM, Willison JHM, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum—visualization of site of synthesis and direct measurement of in vivo process. Proc Natl Acad Sci USA 73:4565–4569CrossRef Brown RM, Willison JHM, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum—visualization of site of synthesis and direct measurement of in vivo process. Proc Natl Acad Sci USA 73:4565–4569CrossRef
Zurück zum Zitat Cruys-Bagger N, Elmerdahl J, Praestgaard E, Tatsumi H, Spodsberg N, Borch K, Westh P (2012) Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A. J Biol Chem 287:18451–18458. doi:10.1074/jbc.M111.334946 CrossRef Cruys-Bagger N, Elmerdahl J, Praestgaard E, Tatsumi H, Spodsberg N, Borch K, Westh P (2012) Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A. J Biol Chem 287:18451–18458. doi:10.​1074/​jbc.​M111.​334946 CrossRef
Zurück zum Zitat Cruys-Bagger N, Tatsumi H, Ren GR, Borch K, Westh P (2013) Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain. Biochemistry-US 52:8938–8948. doi:10.1021/bi401210n CrossRef Cruys-Bagger N, Tatsumi H, Ren GR, Borch K, Westh P (2013) Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain. Biochemistry-US 52:8938–8948. doi:10.​1021/​bi401210n CrossRef
Zurück zum Zitat Davis MF, Wolfrum E, Jeoh T (2008) Selection of promising biomass feedstock lines using high-throughput spectrometric and enzymatic assays. In: Vermerris W (ed) Genetic improvement of bioenergy crops. New York, Springer Davis MF, Wolfrum E, Jeoh T (2008) Selection of promising biomass feedstock lines using high-throughput spectrometric and enzymatic assays. In: Vermerris W (ed) Genetic improvement of bioenergy crops. New York, Springer
Zurück zum Zitat Dibble CJ, Shatova TA, Jorgenson JL, Stickel JJ (2011) Particle morphology characterization and manipulation in biomass slurries and the effect on rheological properties and enzymatic conversion. Biotechnol Prog 27:1751–1759. doi:10.1002/btpr.669 CrossRef Dibble CJ, Shatova TA, Jorgenson JL, Stickel JJ (2011) Particle morphology characterization and manipulation in biomass slurries and the effect on rheological properties and enzymatic conversion. Biotechnol Prog 27:1751–1759. doi:10.​1002/​btpr.​669 CrossRef
Zurück zum Zitat Divne C, Stahlberg J, Teeri TT, Jones A (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309–325CrossRef Divne C, Stahlberg J, Teeri TT, Jones A (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309–325CrossRef
Zurück zum Zitat EERE (2013) Bioenergy technologies office multi-year program plan, May 2013. U. S. Department of energy, office of energy efficiency and renewable energy EERE (2013) Bioenergy technologies office multi-year program plan, May 2013. U. S. Department of energy, office of energy efficiency and renewable energy
Zurück zum Zitat Frei E, Preston RD (1961) Cell wall organization and wall growth in the filamentous green Algae Cladophora and Chaetomorpha. II. Spiral structure and spiral growth proceedings of the Royal Society of London series B. Biol Sci 155:55–77. doi:10.2307/90322 CrossRef Frei E, Preston RD (1961) Cell wall organization and wall growth in the filamentous green Algae Cladophora and Chaetomorpha. II. Spiral structure and spiral growth proceedings of the Royal Society of London series B. Biol Sci 155:55–77. doi:10.​2307/​90322 CrossRef
Zurück zum Zitat Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in Terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206:1568–1575. doi:10.1002/macp.200500008 CrossRef Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in Terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206:1568–1575. doi:10.​1002/​macp.​200500008 CrossRef
Zurück zum Zitat Henrissat B, Driguez H, Viet C, Schulein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio-Technology 3:722–726CrossRef Henrissat B, Driguez H, Viet C, Schulein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio-Technology 3:722–726CrossRef
Zurück zum Zitat Igarashi K (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 334:453 Igarashi K (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 334:453
Zurück zum Zitat Imai T, Sugiyama J (1998) Nanodomains of I-alpha and I-beta cellulose in algal microfibrils. Macromolecules 31:6275–6279CrossRef Imai T, Sugiyama J (1998) Nanodomains of I-alpha and I-beta cellulose in algal microfibrils. Macromolecules 31:6275–6279CrossRef
Zurück zum Zitat Jeoh T, Wilson DB, Walker LP (2002) Cooperative and competitive binding in synergistic mixtures of Thermobifida fusca Cel5A, Cel6B and Cel9A. Biotechnol Prog 18:760–769CrossRef Jeoh T, Wilson DB, Walker LP (2002) Cooperative and competitive binding in synergistic mixtures of Thermobifida fusca Cel5A, Cel6B and Cel9A. Biotechnol Prog 18:760–769CrossRef
Zurück zum Zitat Jeoh T, Ishizawa C, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122CrossRef Jeoh T, Ishizawa C, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122CrossRef
Zurück zum Zitat Jung J, Sethi A, Gaiotto T, Han JJ, Jeoh T, Gnanakaran S, Goodwin PM (2013) Binding and movement of individual Cel7A cellobiohydrolases on crystalline cellulose surfaces revealed by single-molecule fluorescence imaging. J Biol Chem 288:24164–24172. doi:10.1074/jbc.M113.455758 CrossRef Jung J, Sethi A, Gaiotto T, Han JJ, Jeoh T, Gnanakaran S, Goodwin PM (2013) Binding and movement of individual Cel7A cellobiohydrolases on crystalline cellulose surfaces revealed by single-molecule fluorescence imaging. J Biol Chem 288:24164–24172. doi:10.​1074/​jbc.​M113.​455758 CrossRef
Zurück zum Zitat Kadic A, Palmqvist B, Liden G (2014) Effects of agitation on particle-size distribution and enzymatic hydrolysis of pretreated spruce and giant reed. Biotechnol Biofuels 7:77CrossRef Kadic A, Palmqvist B, Liden G (2014) Effects of agitation on particle-size distribution and enzymatic hydrolysis of pretreated spruce and giant reed. Biotechnol Biofuels 7:77CrossRef
Zurück zum Zitat Kern W (1990) The evolution of silicon wafer cleaning technology. J Electrochem Soc 137(6):1887–1892 Kern W (1990) The evolution of silicon wafer cleaning technology. J Electrochem Soc 137(6):1887–1892
Zurück zum Zitat Knott BC et al (2013) The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies. J Am Chem Society 136:321–329. doi:10.1021/ja410291u CrossRef Knott BC et al (2013) The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies. J Am Chem Society 136:321–329. doi:10.​1021/​ja410291u CrossRef
Zurück zum Zitat Kongruang S, Han MJ, Breton CIG, Penner MH (2004) Quantitative analysis of cellulose-reducing ends. Appl Biochem Biotech 113–116:213–231CrossRef Kongruang S, Han MJ, Breton CIG, Penner MH (2004) Quantitative analysis of cellulose-reducing ends. Appl Biochem Biotech 113–116:213–231CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I-Beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I-Beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
Zurück zum Zitat Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose 1(alpha), from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306. doi:10.1021/ja037055w CrossRef Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose 1(alpha), from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306. doi:10.​1021/​ja037055w CrossRef
Zurück zum Zitat O’Dell PJ (2013) Understanding the role of physical properties of cellulose on its hydrolyzability by cellulases. University of California, Davis O’Dell PJ (2013) Understanding the role of physical properties of cellulose on its hydrolyzability by cellulases. University of California, Davis
Zurück zum Zitat Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16:641–647CrossRef Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16:641–647CrossRef
Zurück zum Zitat Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRef Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRef
Zurück zum Zitat Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasability of a billion-ton annual supply. Oak Ridge National Laboratory, Oak RidgeCrossRef Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasability of a billion-ton annual supply. Oak Ridge National Laboratory, Oak RidgeCrossRef
Zurück zum Zitat Rasband WS (1997–2012) ImageJ. National Institutes of Health, Bethesda Rasband WS (1997–2012) ImageJ. National Institutes of Health, Bethesda
Zurück zum Zitat Roberts KM, Lavenson DM, Tozzi EJ, McCarthy MJ, Jeoh T (2011) The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high loadings. Cellulose 18:759–773. doi:10.1007/s10570-011-9509-z CrossRef Roberts KM, Lavenson DM, Tozzi EJ, McCarthy MJ, Jeoh T (2011) The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high loadings. Cellulose 18:759–773. doi:10.​1007/​s10570-011-9509-z CrossRef
Zurück zum Zitat Santa-Maria M, Jeoh T (2010) Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis. Biomacromolecules 11:2000–2007. doi:10.1021/bm100366h CrossRef Santa-Maria M, Jeoh T (2010) Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis. Biomacromolecules 11:2000–2007. doi:10.​1021/​bm100366h CrossRef
Zurück zum Zitat Scott TA, Melvin EH (1953) Determination of dextran with anthrone. Analyt Chem 25(11):1656–1661 Scott TA, Melvin EH (1953) Determination of dextran with anthrone. Analyt Chem 25(11):1656–1661
Zurück zum Zitat Shang BZ, Chu J-W (2014) kinetic modeling at single-molecule resolution elucidates the mechanisms of cellulase synergy. ACS Catal 4:2216–2225. doi:10.1021/cs500126q CrossRef Shang BZ, Chu J-W (2014) kinetic modeling at single-molecule resolution elucidates the mechanisms of cellulase synergy. ACS Catal 4:2216–2225. doi:10.​1021/​cs500126q CrossRef
Zurück zum Zitat Shang BZ, Chang R, Chu JW (2013) Systems-level modeling with molecular resolution elucidates the rate-limiting mechanisms of cellulose decomposition by cellobiohydrolases. J Biol Chem 288:29081–29089. doi:10.1074/jbc.M113.497412 CrossRef Shang BZ, Chang R, Chu JW (2013) Systems-level modeling with molecular resolution elucidates the rate-limiting mechanisms of cellulose decomposition by cellobiohydrolases. J Biol Chem 288:29081–29089. doi:10.​1074/​jbc.​M113.​497412 CrossRef
Zurück zum Zitat Shibafuji Y et al (2014) Single-molecule imaging analysis of elementary reaction steps of trichoderma reesei cellobiohydrolase I (Cel7A) hydrolyzing crystalline cellulose Iα and IIII. J Biol Chem 289:14056–14065. doi:10.1074/jbc.M113.546085 CrossRef Shibafuji Y et al (2014) Single-molecule imaging analysis of elementary reaction steps of trichoderma reesei cellobiohydrolase I (Cel7A) hydrolyzing crystalline cellulose Iα and IIII. J Biol Chem 289:14056–14065. doi:10.​1074/​jbc.​M113.​546085 CrossRef
Zurück zum Zitat Skovgaard PA et al (2014) The role of endoglucanase and endoxylanase in liquefaction of hydrothermally pretreated wheat straw. Biotechnol Prog. doi:10.1002/btpr.1893 Skovgaard PA et al (2014) The role of endoglucanase and endoxylanase in liquefaction of hydrothermally pretreated wheat straw. Biotechnol Prog. doi:10.​1002/​btpr.​1893
Zurück zum Zitat Sugiyama J, Persson J, Chanzy H (1991a) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466. doi:10.1021/ma00009a050 CrossRef Sugiyama J, Persson J, Chanzy H (1991a) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466. doi:10.​1021/​ma00009a050 CrossRef
Zurück zum Zitat Sugiyama J, Vuong R, Chanzy H (1991b) Electron-diffraction study on the 2 crystalline phases occurring in native cellulose from an algal cell-wall. Macromolecules 24:4168–4175CrossRef Sugiyama J, Vuong R, Chanzy H (1991b) Electron-diffraction study on the 2 crystalline phases occurring in native cellulose from an algal cell-wall. Macromolecules 24:4168–4175CrossRef
Zurück zum Zitat Teeri TT, Koivula A (1995) Cellulose degradation by native and engineered fungal cellulases carbohydrates. Europe 12:28–33 Teeri TT, Koivula A (1995) Cellulose degradation by native and engineered fungal cellulases carbohydrates. Europe 12:28–33
Zurück zum Zitat Thygesen LG, Hidayat BJ, Johansen KS, Felby C (2011) Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls. J Ind Microbiol Biotechnol 38:975–983. doi:10.1007/s10295-010-0870-y CrossRef Thygesen LG, Hidayat BJ, Johansen KS, Felby C (2011) Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls. J Ind Microbiol Biotechnol 38:975–983. doi:10.​1007/​s10295-010-0870-y CrossRef
Zurück zum Zitat Vaaje-Kolstad G, Westereng B, Horn SJ, Liu ZL, Zhai H, Sorlie M, Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides science 330:219–222. doi:10.1126/science.1192231 Vaaje-Kolstad G, Westereng B, Horn SJ, Liu ZL, Zhai H, Sorlie M, Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides science 330:219–222. doi:10.​1126/​science.​1192231
Zurück zum Zitat Valjamae P, Sild V, Pettersson G, Johansson G (1998) The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface—erosion model. Eur J Biochem 253:469–475CrossRef Valjamae P, Sild V, Pettersson G, Johansson G (1998) The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface—erosion model. Eur J Biochem 253:469–475CrossRef
Zurück zum Zitat Wang M, Wu M, Huo H (2007) Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environ Res Lett 2:024001CrossRef Wang M, Wu M, Huo H (2007) Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environ Res Lett 2:024001CrossRef
Zurück zum Zitat Zhang YHP, Lynd LR (2005) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 6:1510–1515. doi:10.1021/bm049235j CrossRef Zhang YHP, Lynd LR (2005) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 6:1510–1515. doi:10.​1021/​bm049235j CrossRef
Metadaten
Titel
The effect of fibril length and architecture on the accessibility of reducing ends of cellulose Iα to Trichoderma reesei Cel7A
verfasst von
Patrick J. O’Dell
Akshata R. Mudinoor
Sanjai J. Parikh
Tina Jeoh
Publikationsdatum
01.06.2015
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2015
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0618-y

Weitere Artikel der Ausgabe 3/2015

Cellulose 3/2015 Zur Ausgabe