Skip to main content
Erschienen in:

01.10.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Effect of Grain Boundary Mobility on the Formation of Second Phases in Nanostructured Binary Alloys

verfasst von: P. E. L’vov, V. V. Svetukhin

Erschienen in: Physics of Metals and Metallography | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

On the basis of the phase field theory, the features of the formation of second-phase precipitates in polycrystalline binary alloys are studied, taking into account the grain boundary mobility, anisotropic impurity diffusion near the boundaries, and thermal fluctuations. The difference in the interaction parameters at the grain boundaries and in their volume, as well as accelerated grain boundary diffusion, can lead to the heterogeneous formation of second phases, the distribution of which can correspond to nonwetting or complete or partial wetting of the boundaries. The presence of the grain boundary mobility leads to an increase in the volume fraction of the second phases. In the case of complete or partial wetting, the resulting second phase can move along with the grain boundary. In the case of nonwetting, the second phase is formed near the grain boundaries and is practically immobile, while precipitates grow mainly along the direction of motion of the boundary. In the case of nonwetting, separation of precipitates from the boundary is also observed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I. Kaur, Y. Mishin, and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion (Wiley, Chichester, 1995). I. Kaur, Y. Mishin, and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion (Wiley, Chichester, 1995).
2.
Zurück zum Zitat B. B. Straumal, Phase Transitions on Grain Boundaries (Nauka, Moscow, 2003) [in Russian]. B. B. Straumal, Phase Transitions on Grain Boundaries (Nauka, Moscow, 2003) [in Russian].
3.
Zurück zum Zitat V. N. Chuvil’deev, Non-Equilibrium Grain Boundaries in Metals. Theory and Applications (Fizmatlit, Moscow, 2004) [in Russian]. V. N. Chuvil’deev, Non-Equilibrium Grain Boundaries in Metals. Theory and Applications (Fizmatlit, Moscow, 2004) [in Russian].
4.
Zurück zum Zitat I. K. Razumov, A. E. Ermakov, Yu. N. Gornostyrev, and B. B. Straumal, “Nonequilibrium phase transformations in alloys under severe plastic deformation,” Phys.-Usp. 63 (8), 785–810 (2020).CrossRef I. K. Razumov, A. E. Ermakov, Yu. N. Gornostyrev, and B. B. Straumal, “Nonequilibrium phase transformations in alloys under severe plastic deformation,” Phys.-Usp. 63 (8), 785–810 (2020).CrossRef
5.
Zurück zum Zitat C. Herzig and Y. Mishin, “Grain boundary diffusion in metals,” in Diffusion in Condensed Matter, Ed. by Heitjans and J. Kärger (Springer, Berlin, 2005), pp. 337–366. C. Herzig and Y. Mishin, “Grain boundary diffusion in metals,” in Diffusion in Condensed Matter, Ed. by Heitjans and J. Kärger (Springer, Berlin, 2005), pp. 337–366.
6.
Zurück zum Zitat R. K. Koju and Y. Mishin, “Atomistic study of grain-boundary segregation and grain-boundary diffusion in Al–Mg alloys,” Acta Mater. 201, 596–603 (2020).CrossRef R. K. Koju and Y. Mishin, “Atomistic study of grain-boundary segregation and grain-boundary diffusion in Al–Mg alloys,” Acta Mater. 201, 596–603 (2020).CrossRef
7.
Zurück zum Zitat P. Lejček, Grain Boundary Segregation in Metals (Springer, Berlin, 2010).CrossRef P. Lejček, Grain Boundary Segregation in Metals (Springer, Berlin, 2010).CrossRef
8.
Zurück zum Zitat K. F. Kelton and A. L. Greer, Nucleation in Condensed Matter (Elsevier, Oxford, 2010). K. F. Kelton and A. L. Greer, Nucleation in Condensed Matter (Elsevier, Oxford, 2010).
9.
Zurück zum Zitat B. B. Straumal, O. A. Kogtenkova, M. Yu. Murashkin, M. F. Bulatov, T. Czeppe, and P. Zięba, “Grain boundary wetting transition in Al–Mg alloys,” Mater. Lett. 186, 82–85 (2017).CrossRef B. B. Straumal, O. A. Kogtenkova, M. Yu. Murashkin, M. F. Bulatov, T. Czeppe, and P. Zięba, “Grain boundary wetting transition in Al–Mg alloys,” Mater. Lett. 186, 82–85 (2017).CrossRef
10.
Zurück zum Zitat J. Kundin, H. Sohaib, R. Scheidung, and I. Steinbach, “Phase-field modeling of pores and precipitates in polycrystalline systems,” Modell. Simul. Mater. Sci. Eng. 26, 065003 (2018).CrossRef J. Kundin, H. Sohaib, R. Scheidung, and I. Steinbach, “Phase-field modeling of pores and precipitates in polycrystalline systems,” Modell. Simul. Mater. Sci. Eng. 26, 065003 (2018).CrossRef
11.
Zurück zum Zitat V. B. Fedoseev, “Splitting of the phase diagram of a stratified solid solution in micro- and nanosized systems,” Phys. Solid State 57 (3), 599–604 (2015).CrossRef V. B. Fedoseev, “Splitting of the phase diagram of a stratified solid solution in micro- and nanosized systems,” Phys. Solid State 57 (3), 599–604 (2015).CrossRef
12.
Zurück zum Zitat P. E. L’vov and V. V. Svetukhin, “Influence of grain boundaries on the distribution of components in binary alloys,” Phys. Solid State 59 (12), 2453–2463 (2017).CrossRef P. E. L’vov and V. V. Svetukhin, “Influence of grain boundaries on the distribution of components in binary alloys,” Phys. Solid State 59 (12), 2453–2463 (2017).CrossRef
13.
Zurück zum Zitat L. Wang and R. D. Kamachali, “Density-based grain boundary phase diagrams: Application to Fe–Mn–Cr, Fe–Mn–Ni, Fe–Mn–Co, Fe–Cr–Ni and Fe–Cr–Co alloy systems,” Acta Mater. 207, 116668 (2021).CrossRef L. Wang and R. D. Kamachali, “Density-based grain boundary phase diagrams: Application to Fe–Mn–Cr, Fe–Mn–Ni, Fe–Mn–Co, Fe–Cr–Ni and Fe–Cr–Co alloy systems,” Acta Mater. 207, 116668 (2021).CrossRef
14.
Zurück zum Zitat I. N. Kar’kin, L. E. Kar’kina, P. A. Korzhavyi, and Yu. N. Gornostyrev, “Monte Carlo simulation of the kinetics of decomposition and the formation of precipitates at grain boundaries of the general type in dilute bcc Fe–Cu alloys,” Phys. Solid State 59, 106–113 (2017).CrossRef I. N. Kar’kin, L. E. Kar’kina, P. A. Korzhavyi, and Yu. N. Gornostyrev, “Monte Carlo simulation of the kinetics of decomposition and the formation of precipitates at grain boundaries of the general type in dilute bcc Fe–Cu alloys,” Phys. Solid State 59, 106–113 (2017).CrossRef
15.
Zurück zum Zitat J. Zhang, W. Liu, P. Chen, H. He, C. He, and D. Yun, “Molecular dynamics study of the interaction between symmetric tilt Σ5(210) 〈001〉 grain boundary and radiation-induced point defects in Fe–9Cr alloy,” Nucl. Instrum. Methods Phys. Res., Sect. B 451, 99–103 (2019). J. Zhang, W. Liu, P. Chen, H. He, C. He, and D. Yun, “Molecular dynamics study of the interaction between symmetric tilt Σ5(210) 〈001〉 grain boundary and radiation-induced point defects in Fe–9Cr alloy,” Nucl. Instrum. Methods Phys. Res., Sect. B 451, 99–103 (2019).
16.
Zurück zum Zitat M. Tikhonchev, A. Muralev, and V. Svetukhin, “MD simulation of atomic displacement cascades in random Fe–9 at % Cr binary alloy with twin grain boundaries,” Fusion Sci. Technol. 66, 91–99 (2014).CrossRef M. Tikhonchev, A. Muralev, and V. Svetukhin, “MD simulation of atomic displacement cascades in random Fe–9 at % Cr binary alloy with twin grain boundaries,” Fusion Sci. Technol. 66, 91–99 (2014).CrossRef
17.
Zurück zum Zitat I. K. Razumov, Yu. N. Gornostyrev, and A. E. Ermakov, “Nonequilibrium diffusional phase transformations in alloys induced by migration of grain boundaries and dislocations,” Phys. Solid State 61 (2), 214–224 (2019).CrossRef I. K. Razumov, Yu. N. Gornostyrev, and A. E. Ermakov, “Nonequilibrium diffusional phase transformations in alloys induced by migration of grain boundaries and dislocations,” Phys. Solid State 61 (2), 214–224 (2019).CrossRef
18.
Zurück zum Zitat D. Fan and L.-Q. Chen, “Computer simulation of grain growth using a continuum field model,” Acta Mater. 45, 611–622 (1997).CrossRef D. Fan and L.-Q. Chen, “Computer simulation of grain growth using a continuum field model,” Acta Mater. 45, 611–622 (1997).CrossRef
19.
Zurück zum Zitat D. Fan and L.-Q. Chen, “Diffusion-controlled grain growth in two-phase solids,” Acta Mater. 45, 3297–3310 (1997).CrossRef D. Fan and L.-Q. Chen, “Diffusion-controlled grain growth in two-phase solids,” Acta Mater. 45, 3297–3310 (1997).CrossRef
20.
Zurück zum Zitat S. Bhattacharyya, T. Wook, H. K. Chang, and L.‑Q. Chen, “A phase-field model of stress effect on grain boundary migration,” Modell. Simul. Mater. Sci. Eng. 19, 035002 (2011).CrossRef S. Bhattacharyya, T. Wook, H. K. Chang, and L.‑Q. Chen, “A phase-field model of stress effect on grain boundary migration,” Modell. Simul. Mater. Sci. Eng. 19, 035002 (2011).CrossRef
21.
Zurück zum Zitat J. Kundin, H. Farhandi, K. P. Ganesan, R. S. M. Almeida, K. Tushtev, and K. Rezwan, “Phase-field modeling of grain growth in presence of grain boundary diffusion and segregation in ceramic matrix mini-composites,” Comput. Mater. Sci. 190, 110295 (2021).CrossRef J. Kundin, H. Farhandi, K. P. Ganesan, R. S. M. Almeida, K. Tushtev, and K. Rezwan, “Phase-field modeling of grain growth in presence of grain boundary diffusion and segregation in ceramic matrix mini-composites,” Comput. Mater. Sci. 190, 110295 (2021).CrossRef
22.
Zurück zum Zitat H. Ramanarayan and T. Abinandanan, “Grain boundary effects on spinodal decomposition,” Acta Mater. 52, 921–930 (2004).CrossRef H. Ramanarayan and T. Abinandanan, “Grain boundary effects on spinodal decomposition,” Acta Mater. 52, 921–930 (2004).CrossRef
23.
Zurück zum Zitat J. García-Ojalvo and J. M. Sancho, Noise in Spatially Extended Systems (Springer, New York, 1999).CrossRef J. García-Ojalvo and J. M. Sancho, Noise in Spatially Extended Systems (Springer, New York, 1999).CrossRef
24.
Zurück zum Zitat P. E. L’vov and V. V. Svetukhin, “Stochastic simulation of nucleation in binary alloys,” Modell. Simul. Mater. Sci. Eng. 26, 045001 (2018).CrossRef P. E. L’vov and V. V. Svetukhin, “Stochastic simulation of nucleation in binary alloys,” Modell. Simul. Mater. Sci. Eng. 26, 045001 (2018).CrossRef
25.
Zurück zum Zitat P. E. L’vov and V. V. Svetukhin, “Generalized non-classical nucleation model in binary alloys,” Modell. Simul. Mater. Sci. Eng. 27, 25002 (2019).CrossRef P. E. L’vov and V. V. Svetukhin, “Generalized non-classical nucleation model in binary alloys,” Modell. Simul. Mater. Sci. Eng. 27, 25002 (2019).CrossRef
26.
Zurück zum Zitat J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. I. Interfacial free energy,” J. Chem. Phys. 28 (2), 258–267 (1958).CrossRef J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. I. Interfacial free energy,” J. Chem. Phys. 28 (2), 258–267 (1958).CrossRef
27.
Zurück zum Zitat S. B. Biner, Programming Phase-Field Modeling (Springer, Cham, 2017).CrossRef S. B. Biner, Programming Phase-Field Modeling (Springer, Cham, 2017).CrossRef
28.
Zurück zum Zitat M. K. Miller and R. G. Forbes, Atom-Probe Tomography: The Local Electrode Atom Probe (Springer, New York, 2014).CrossRef M. K. Miller and R. G. Forbes, Atom-Probe Tomography: The Local Electrode Atom Probe (Springer, New York, 2014).CrossRef
29.
Zurück zum Zitat V. V. Slezov, Kinetics of First-Order Phase Transitions (Wiley, Weinheim, 2009).CrossRef V. V. Slezov, Kinetics of First-Order Phase Transitions (Wiley, Weinheim, 2009).CrossRef
Metadaten
Titel
The Effect of Grain Boundary Mobility on the Formation of Second Phases in Nanostructured Binary Alloys
verfasst von
P. E. L’vov
V. V. Svetukhin
Publikationsdatum
01.10.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 10/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22600865

Weitere Artikel der Ausgabe 10/2022

Physics of Metals and Metallography 10/2022 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Calorimetric Studies of Phase Transformations in Fe–Ni Alloys