Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2018

24.05.2018

The effect of inhibition on the existence of traveling wave solutions for a neural field model of human seizure termination

verfasst von: L. R. González-Ramírez, M. A. Kramer

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we study the influence of inhibition on an activity-based neural field model consisting of an excitatory population with a linear adaptation term that directly regulates the activity of the excitatory population. Such a model has been used to replicate traveling wave data as observed in high density local field potential recordings (González-Ramírez et al. PLoS Computational Biology, 11(2), e1004065, 2015). In this work, we show that by adding an inhibitory population to this model we can still replicate wave properties as observed in human clinical data preceding seizure termination, but the parameter range over which such waves exist becomes more restricted. This restriction depends on the strength of the inhibition and the timescale at which the inhibition acts. In particular, if inhibition acts on a slower timescale relative to excitation then it is possible to still replicate traveling wave patterns as observed in the clinical data even with a relatively strong effect of inhibition. However, if inhibition acts on the same timescale as the excitation, or faster, then traveling wave patterns with the desired characteristics cease to exist when the inhibition becomes sufficiently strong.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Amari, S. (1977). Dynamics of pattern formation in lateral inhibition type neural fields. Biological Cybernetics, 27, 77–87.CrossRefPubMed Amari, S. (1977). Dynamics of pattern formation in lateral inhibition type neural fields. Biological Cybernetics, 27, 77–87.CrossRefPubMed
Zurück zum Zitat Bojak, I., & Liley, D.T.J. (2005). Modeling the effects of anesthesia on the electroencephalogram. Physical Review E, 71, 041902.CrossRef Bojak, I., & Liley, D.T.J. (2005). Modeling the effects of anesthesia on the electroencephalogram. Physical Review E, 71, 041902.CrossRef
Zurück zum Zitat Bojak, I., Liley, D.T.J., Cadusch, P.J., Cheng, K. (2004). Electrorhythmogenesis and anaesthesia in a physiological mean field theory. Neurocomputing, 58–60, 1197–202.CrossRef Bojak, I., Liley, D.T.J., Cadusch, P.J., Cheng, K. (2004). Electrorhythmogenesis and anaesthesia in a physiological mean field theory. Neurocomputing, 58–60, 1197–202.CrossRef
Zurück zum Zitat Braitenberg, V., & Schuz, A. (1998). Cortex: statistics and geometry of neuronal connectivity. Berlin: Springer.CrossRef Braitenberg, V., & Schuz, A. (1998). Cortex: statistics and geometry of neuronal connectivity. Berlin: Springer.CrossRef
Zurück zum Zitat Bressloff, P.C. (2001). Traveling fronts and wave propagation failure in an inhomogeneous neural network. Physica D, 155, 83–100.CrossRef Bressloff, P.C. (2001). Traveling fronts and wave propagation failure in an inhomogeneous neural network. Physica D, 155, 83–100.CrossRef
Zurück zum Zitat Bressloff, P.C. (2012). Spatiotemporal dynamics of continuum neural fields. Journal of Physics A: Mathematical and Theoretical, 45, 033001.CrossRef Bressloff, P.C. (2012). Spatiotemporal dynamics of continuum neural fields. Journal of Physics A: Mathematical and Theoretical, 45, 033001.CrossRef
Zurück zum Zitat Bressloff, P.C. (2014). Waves in neural media, Lecture notes on mathematical modelling in the life sciences. Berlin: Springer. Bressloff, P.C. (2014). Waves in neural media, Lecture notes on mathematical modelling in the life sciences. Berlin: Springer.
Zurück zum Zitat Bressloff, P.C., Cowan, J.D., Golubitsky, M, Thomas, P.J., Wiener, M. (2001). Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philosophical Transactions of the Royal Society B, 356, 299–330.CrossRef Bressloff, P.C., Cowan, J.D., Golubitsky, M, Thomas, P.J., Wiener, M. (2001). Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philosophical Transactions of the Royal Society B, 356, 299–330.CrossRef
Zurück zum Zitat Chervin, R.D., Pierce, P.A., Connors, B.W. (1988). Periodicity and directionality in the propagation of epileptiform discharges across neocortex. Journal of Neurophysiology, 60, 1695–1713. PMID: 3143812.CrossRefPubMed Chervin, R.D., Pierce, P.A., Connors, B.W. (1988). Periodicity and directionality in the propagation of epileptiform discharges across neocortex. Journal of Neurophysiology, 60, 1695–1713. PMID: 3143812.CrossRefPubMed
Zurück zum Zitat Compte, A., Sanchez-Vives, M.V., McCormick, D.A., Wang, X.J. (2003). Cellular and network mechanisms of slow oscillatory activity (< 1 Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89(5), 2707–2725.CrossRefPubMed Compte, A., Sanchez-Vives, M.V., McCormick, D.A., Wang, X.J. (2003). Cellular and network mechanisms of slow oscillatory activity (< 1 Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89(5), 2707–2725.CrossRefPubMed
Zurück zum Zitat Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biological Cybernetics, 93, 91–108.CrossRefPubMed Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biological Cybernetics, 93, 91–108.CrossRefPubMed
Zurück zum Zitat Coombes, S., beim Graben, P., Potthast, R., Wright, J. (2014). Neural fields: theory and applications. Berlin: Springer.CrossRef Coombes, S., beim Graben, P., Potthast, R., Wright, J. (2014). Neural fields: theory and applications. Berlin: Springer.CrossRef
Zurück zum Zitat Destexhe, A., Bal, T., McCormick, D.A., Sejnowski, T.J. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. Journal of Neurophysiology, 76(3), 2049–2070.CrossRefPubMed Destexhe, A., Bal, T., McCormick, D.A., Sejnowski, T.J. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. Journal of Neurophysiology, 76(3), 2049–2070.CrossRefPubMed
Zurück zum Zitat Ermentrout, G.B. (1998). Neural Networks as spatio-temporal pattern-forming systems. Reports on Progress in Physics, 61, 353–430.CrossRef Ermentrout, G.B. (1998). Neural Networks as spatio-temporal pattern-forming systems. Reports on Progress in Physics, 61, 353–430.CrossRef
Zurück zum Zitat Ermentrout, G.B., & Cowan, J. (1979). A mathematical theory of visual hallucination patterns. Biological Cybernetics, 34, 137– 50.CrossRefPubMed Ermentrout, G.B., & Cowan, J. (1979). A mathematical theory of visual hallucination patterns. Biological Cybernetics, 34, 137– 50.CrossRefPubMed
Zurück zum Zitat Ermentrout, G.B., & Terman, D.H. (2010). Mathematical foundations of neuroscience. Berlin: Springer.CrossRef Ermentrout, G.B., & Terman, D.H. (2010). Mathematical foundations of neuroscience. Berlin: Springer.CrossRef
Zurück zum Zitat Fuster, J.M., & Alexander, G. (1971). Neuron activity related to short-term memory. Science, 173, 652.CrossRefPubMed Fuster, J.M., & Alexander, G. (1971). Neuron activity related to short-term memory. Science, 173, 652.CrossRefPubMed
Zurück zum Zitat Golomb, D., & Amitai, Y. (1997). Propagating neuronal discharges in neocortical slices: computational and experimental study. Journal of Neurophysiology, 78, 1199–1211.CrossRefPubMed Golomb, D., & Amitai, Y. (1997). Propagating neuronal discharges in neocortical slices: computational and experimental study. Journal of Neurophysiology, 78, 1199–1211.CrossRefPubMed
Zurück zum Zitat González-Ramírez, L.R, Ahmed, O., Cash, S.S., Wayne, C.E., Kramer, M.A. (2015). A biologically constrained, mathematical model of cortical wave propagation preceding seizure termination. PLoS Computational Biology, 11(2), e1004065.CrossRefPubMedPubMedCentral González-Ramírez, L.R, Ahmed, O., Cash, S.S., Wayne, C.E., Kramer, M.A. (2015). A biologically constrained, mathematical model of cortical wave propagation preceding seizure termination. PLoS Computational Biology, 11(2), e1004065.CrossRefPubMedPubMedCentral
Zurück zum Zitat Huang, X., Troy, W.C., Yang, Q., Ma, H., Laing, C., Schiff, S., Wu, J.Y. (2004). Spiral waves in disinhibited mammalian cortex. The Journal of Neuroscience, 24, 9897–9902.CrossRefPubMedPubMedCentral Huang, X., Troy, W.C., Yang, Q., Ma, H., Laing, C., Schiff, S., Wu, J.Y. (2004). Spiral waves in disinhibited mammalian cortex. The Journal of Neuroscience, 24, 9897–9902.CrossRefPubMedPubMedCentral
Zurück zum Zitat Jirsa, V.K., & Haken, H. (1996). Field theory of electromagnetic brain activity. Physical Review Letters, 77, 960–3.CrossRefPubMed Jirsa, V.K., & Haken, H. (1996). Field theory of electromagnetic brain activity. Physical Review Letters, 77, 960–3.CrossRefPubMed
Zurück zum Zitat Kilpatrick, Z.P., Folias, S.E., Bressloff, P.C. (2008). Traveling pulses and wave propagation failure in inhomogeneous neural media. SIAM Journal on Applied Dynamical Systems, 7, 161–185.CrossRef Kilpatrick, Z.P., Folias, S.E., Bressloff, P.C. (2008). Traveling pulses and wave propagation failure in inhomogeneous neural media. SIAM Journal on Applied Dynamical Systems, 7, 161–185.CrossRef
Zurück zum Zitat Kramer, M.A., Kirsch, H.E., Szeri, A.J. (2005). Pathological pattern formation and cortical propagation of epileptic seizures. Journal of the Royal Society, Interface, 2, 113–127.CrossRefPubMedPubMedCentral Kramer, M.A., Kirsch, H.E., Szeri, A.J. (2005). Pathological pattern formation and cortical propagation of epileptic seizures. Journal of the Royal Society, Interface, 2, 113–127.CrossRefPubMedPubMedCentral
Zurück zum Zitat Lee, U., Kim, S., Jung, K. (2006). Classification of epilepsy types through global network analysis of scalp electroencephalograms. Physical Review E, 73, 041920.CrossRef Lee, U., Kim, S., Jung, K. (2006). Classification of epilepsy types through global network analysis of scalp electroencephalograms. Physical Review E, 73, 041920.CrossRef
Zurück zum Zitat Liley, D.T.J., & Bojak, I. (2005). Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. Journal of Clinical Neurophysiology, 22, 5. Liley, D.T.J., & Bojak, I. (2005). Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. Journal of Clinical Neurophysiology, 22, 5.
Zurück zum Zitat Liley, D.T.J., Cadusch, P.J., Dafilis, M.P. (2002). A spatially continuous mean field theory of electrocortical activity. Network, 13, 67–113.CrossRefPubMed Liley, D.T.J., Cadusch, P.J., Dafilis, M.P. (2002). A spatially continuous mean field theory of electrocortical activity. Network, 13, 67–113.CrossRefPubMed
Zurück zum Zitat Markram, H., Toledo-Rodríguez, M., Wang, Y., Gupta, A., Silberberg, G., Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 5(10), 793–807.CrossRefPubMed Markram, H., Toledo-Rodríguez, M., Wang, Y., Gupta, A., Silberberg, G., Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 5(10), 793–807.CrossRefPubMed
Zurück zum Zitat Milton, J., & Jung, P. (2003). Epilepsy as a dynamic disease. Berlin: Springer.CrossRef Milton, J., & Jung, P. (2003). Epilepsy as a dynamic disease. Berlin: Springer.CrossRef
Zurück zum Zitat Nunez, P.I. (1995). Neocortical dynamics and human EEG rhythms, (p. 708). New York: Oxford University Press. Nunez, P.I. (1995). Neocortical dynamics and human EEG rhythms, (p. 708). New York: Oxford University Press.
Zurück zum Zitat Pinto, D.J., & Ermentrout, G.B. (2001). Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses. SIAM Journal on Applied Mathematics, 62(1), 226–243.CrossRef Pinto, D.J., & Ermentrout, G.B. (2001). Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses. SIAM Journal on Applied Mathematics, 62(1), 226–243.CrossRef
Zurück zum Zitat Pinto, D.J., Brumberg, J.C., Simons, D.J., Ermentrout, G.B. (1996). A quantitative population model of whisker barrels: re-examining the Wilson-Cowan equations. Journal of Computational Neuroscience, 3, 247–264.CrossRefPubMed Pinto, D.J., Brumberg, J.C., Simons, D.J., Ermentrout, G.B. (1996). A quantitative population model of whisker barrels: re-examining the Wilson-Cowan equations. Journal of Computational Neuroscience, 3, 247–264.CrossRefPubMed
Zurück zum Zitat Pinto, D.J., Patrick, S.L., Huang, W.C., Connors, B.W. (2005). Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. The Journal of Neuroscience, 25 (36), 8131/81-40, 247–264.CrossRef Pinto, D.J., Patrick, S.L., Huang, W.C., Connors, B.W. (2005). Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. The Journal of Neuroscience, 25 (36), 8131/81-40, 247–264.CrossRef
Zurück zum Zitat Robinson, P.A., Loxley, P.N., O’Connor, S.C., Rennie, C.J. (2001). Modal analysis of corticothalamic dynamics, electroencephalographic spectra and evoked potentials. Physical Review E, 63, 041909–13.CrossRef Robinson, P.A., Loxley, P.N., O’Connor, S.C., Rennie, C.J. (2001). Modal analysis of corticothalamic dynamics, electroencephalographic spectra and evoked potentials. Physical Review E, 63, 041909–13.CrossRef
Zurück zum Zitat Shusterman, V., & Troy, W.C. (2008). From baseline to epileptiform activity: a path to synchronized rhythmicity in large-scale neural networks. Physical Review E, 77, 061911.CrossRef Shusterman, V., & Troy, W.C. (2008). From baseline to epileptiform activity: a path to synchronized rhythmicity in large-scale neural networks. Physical Review E, 77, 061911.CrossRef
Zurück zum Zitat Smith, E.H., Liou, J., Davis, T.S., Merricks, E. M., Kellis, S.S., Weiss, S.A., et al. (2016). The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures.Nature Communications, 7, 1–12. Smith, E.H., Liou, J., Davis, T.S., Merricks, E. M., Kellis, S.S., Weiss, S.A., et al. (2016). The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures.Nature Communications, 7, 1–12.
Zurück zum Zitat Spencer, J.P., & Schoner, G. (2006). An embodied approach to cognitive systems: a dynamic neural field theory of spatial working memory. In Proceedings of the 28th annual conference of the cognitive science society (pp. 2180–2185). Spencer, J.P., & Schoner, G. (2006). An embodied approach to cognitive systems: a dynamic neural field theory of spatial working memory. In Proceedings of the 28th annual conference of the cognitive science society (pp. 2180–2185).
Zurück zum Zitat Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Liley, D.T.J. (1999). Theoretical EEG stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Physical Review E, 60, 7299–311.CrossRef Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Liley, D.T.J. (1999). Theoretical EEG stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Physical Review E, 60, 7299–311.CrossRef
Zurück zum Zitat Toubol, J., Wendling, F., Chauvel, P., Faugeras, O. (2013). Neural mass activity, bifurcations and epilepsy. Neural Computation, 23(12), 3232–3286.CrossRef Toubol, J., Wendling, F., Chauvel, P., Faugeras, O. (2013). Neural mass activity, bifurcations and epilepsy. Neural Computation, 23(12), 3232–3286.CrossRef
Zurück zum Zitat Traub, R., Contreras, D., Cunningham, M., Murray, H., LeBeau, F., Roopun, A., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of Neurophysiology, 93, 2194–2232.CrossRefPubMed Traub, R., Contreras, D., Cunningham, M., Murray, H., LeBeau, F., Roopun, A., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of Neurophysiology, 93, 2194–2232.CrossRefPubMed
Zurück zum Zitat Wagner, F.B., Eskandar, E.N., Crosgrove, G.R., Madsen, J.R., et al. (2015). Microscale spatiotemporal dynamics during neocortical propagation of human focal seizures. Neuroimage, 122, 114–30.CrossRefPubMedPubMedCentral Wagner, F.B., Eskandar, E.N., Crosgrove, G.R., Madsen, J.R., et al. (2015). Microscale spatiotemporal dynamics during neocortical propagation of human focal seizures. Neuroimage, 122, 114–30.CrossRefPubMedPubMedCentral
Zurück zum Zitat Wilson, H.R., & Cowan, J.D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Cybernetik, 13, 55–80. Wilson, H.R., & Cowan, J.D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Cybernetik, 13, 55–80.
Zurück zum Zitat Wu, J.Y., Guan, L., Bai, L., Yang, Q. (2001). Spatiotemporal properties of an evoked population activity in rat sensory cortical slices. Journal of Neurophysiology, 86, 2461–74. PMID: 11698535.CrossRefPubMed Wu, J.Y., Guan, L., Bai, L., Yang, Q. (2001). Spatiotemporal properties of an evoked population activity in rat sensory cortical slices. Journal of Neurophysiology, 86, 2461–74. PMID: 11698535.CrossRefPubMed
Zurück zum Zitat Xiao, Y., Huang, X.Y., Van Wert, S., Barreto, E., Wu, J.Y, Gluckman, B.J., Schiff, S.J. (2012). The role of inhibition in oscillatory wave dynamics in the cortex. European Journal of Neuroscience, 36, 2201–2212.CrossRefPubMed Xiao, Y., Huang, X.Y., Van Wert, S., Barreto, E., Wu, J.Y, Gluckman, B.J., Schiff, S.J. (2012). The role of inhibition in oscillatory wave dynamics in the cortex. European Journal of Neuroscience, 36, 2201–2212.CrossRefPubMed
Metadaten
Titel
The effect of inhibition on the existence of traveling wave solutions for a neural field model of human seizure termination
verfasst von
L. R. González-Ramírez
M. A. Kramer
Publikationsdatum
24.05.2018
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2018
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-018-0685-9

Weitere Artikel der Ausgabe 3/2018

Journal of Computational Neuroscience 3/2018 Zur Ausgabe