Skip to main content
Erschienen in:

01.10.2022 | STRENGTH AND PLASTICITY

The Effect of Prolonged Annealing on the Structural Stability of Nanoparticle-Hardened Low-Carbon 9% Cr–3% Co Steel

verfasst von: A. E. Fedoseeva, S. I. Degtyareva

Erschienen in: Physics of Metals and Metallography | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Abstract—The effect of long-term annealing on the structure of low-carbon 9% Cr–3% Co steel hardened with nanoparticles has been studied. Annealing was performed for 100, 500, 1000, and 3000 hours at a temperature of 650°C. After heat treatment, the width of martensitic laths in the steel structure was about 300 nm and the dislocation number density inside the laths was high. The lath structure of tempered martensite was stabilized by (Ta,Cr)X carbonitrides with an average size of 11 nm. The Vickers microhardness decreased by 16% after 3000-h annealing compared to that of the initial state. The decrease in microhardness was accompanied by structural changes in the steel upon annealing, such as a decrease in the dislocation density, a decrease in the content of tungsten and copper in the solid solution, and the enlargement of carbonitrides (Ta,Cr)X and martensitic laths. In general, the structural stability of the investigated steel during long-term annealing is quite high compared to that of other high-chromium martensitic steels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Kaibyshev, V. Skorobogatykh, and I. Shchenkova, “New martensitic steels for fossil power plant: Creep resistance,” Phys. Met. Metallogr. 109, 186–200 (2010).CrossRef R. Kaibyshev, V. Skorobogatykh, and I. Shchenkova, “New martensitic steels for fossil power plant: Creep resistance,” Phys. Met. Metallogr. 109, 186–200 (2010).CrossRef
2.
Zurück zum Zitat V. Skorobogatykh and I. Shchenkova, “Development and mastering of materials for thermal blocks for super-supercritical parameters,” Energonadzor i Energobezopasnost’ 1, 56–59 (2008). V. Skorobogatykh and I. Shchenkova, “Development and mastering of materials for thermal blocks for super-supercritical parameters,” Energonadzor i Energobezopasnost’ 1, 56–59 (2008).
3.
Zurück zum Zitat F. Abe, T. U. Kern, and R. Viswanathan, Creep-Resistant Steels (Woodhead, Cambridge, 2008).CrossRef F. Abe, T. U. Kern, and R. Viswanathan, Creep-Resistant Steels (Woodhead, Cambridge, 2008).CrossRef
4.
Zurück zum Zitat A. E. Fedoseeva, I. S. Nikitin, and R. O. Kaibyshev, “Effect of the quenching temperature on the creep resistance of 9% Cr–1% W–1% Mo–V–Nb martensite steel,” Phys. Met. Metallogr. 123 (1), 92–98 (2022).CrossRef A. E. Fedoseeva, I. S. Nikitin, and R. O. Kaibyshev, “Effect of the quenching temperature on the creep resistance of 9% Cr–1% W–1% Mo–V–Nb martensite steel,” Phys. Met. Metallogr. 123 (1), 92–98 (2022).CrossRef
5.
Zurück zum Zitat H. K. Danielsen, “Review of Z phase precipitation in 9–12 wt % Cr steels,” Mater. Sci. Technol. 32, 126–137 (2016).CrossRef H. K. Danielsen, “Review of Z phase precipitation in 9–12 wt % Cr steels,” Mater. Sci. Technol. 32, 126–137 (2016).CrossRef
6.
Zurück zum Zitat A. Fedoseeva, I. Nikitin, N. Dudova, and R. Kaibyshev, “The effect of creep and long annealing conditions on the formation of the Z-phase particles,” Phys. Met. Metallogr. 121, 561–567 (2020).CrossRef A. Fedoseeva, I. Nikitin, N. Dudova, and R. Kaibyshev, “The effect of creep and long annealing conditions on the formation of the Z-phase particles,” Phys. Met. Metallogr. 121, 561–567 (2020).CrossRef
7.
Zurück zum Zitat A. Fedoseeva, A. Dolzhenko, and A. Fedoseev, “Effect of thermo-mechanical treatment on short-term mechanical properties of low-carbon 9% Cr martensitic steel,” AIP Conf. Proc. 2509, 020072 (2022).CrossRef A. Fedoseeva, A. Dolzhenko, and A. Fedoseev, “Effect of thermo-mechanical treatment on short-term mechanical properties of low-carbon 9% Cr martensitic steel,” AIP Conf. Proc. 2509, 020072 (2022).CrossRef
8.
Zurück zum Zitat A. Fedoseeva and A. Fedoseev, “Modeling of thermo-mechanical treatment for formation of stable particles in a low-carbon 9% Cr martensitic steel,” AIP Conf. Proc. 2509, 020071 (2022).CrossRef A. Fedoseeva and A. Fedoseev, “Modeling of thermo-mechanical treatment for formation of stable particles in a low-carbon 9% Cr martensitic steel,” AIP Conf. Proc. 2509, 020071 (2022).CrossRef
9.
Zurück zum Zitat H. Wang, W. Yan, S. Zwaag, Q. Shi, W. Wang, K. Yang, and Y. Shan, “On the 650°C thermostability of 9–12Cr heat resistant steels containing different precipitates,” Acta Mater. 134, 143–154 (2017).CrossRef H. Wang, W. Yan, S. Zwaag, Q. Shi, W. Wang, K. Yang, and Y. Shan, “On the 650°C thermostability of 9–12Cr heat resistant steels containing different precipitates,” Acta Mater. 134, 143–154 (2017).CrossRef
10.
Zurück zum Zitat A. Fedoseeva, N. Dudova, and R. Kaibyshev, “Creep strength breakdown and microstructure evolution in a 3% Co modified P92 steel,” Mater. Sci. Eng., A 654, 1–12 (2016).CrossRef A. Fedoseeva, N. Dudova, and R. Kaibyshev, “Creep strength breakdown and microstructure evolution in a 3% Co modified P92 steel,” Mater. Sci. Eng., A 654, 1–12 (2016).CrossRef
11.
Zurück zum Zitat F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, 2004). F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, 2004).
12.
Zurück zum Zitat I. Fedorova, Zh. Yanushkevich, A. Belyakov, and R. Kaibyshev, “Microstructure and deformation behavior of a hot forged 9% Cr creep resistant steel,” Adv. Mater. Res. 409, 672–677 (2012).CrossRef I. Fedorova, Zh. Yanushkevich, A. Belyakov, and R. Kaibyshev, “Microstructure and deformation behavior of a hot forged 9% Cr creep resistant steel,” Adv. Mater. Res. 409, 672–677 (2012).CrossRef
13.
Zurück zum Zitat V. A. Dudko, A. N. Belyakov, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev, “Structural changes in refractory steel 10Kh9V2MFBR due to creep at 650°C,” Met. Sci. Heat Treat. 52, 111–117 (2010).CrossRef V. A. Dudko, A. N. Belyakov, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev, “Structural changes in refractory steel 10Kh9V2MFBR due to creep at 650°C,” Met. Sci. Heat Treat. 52, 111–117 (2010).CrossRef
14.
Zurück zum Zitat A. Yu. Kipelova, A. N. Belyakov, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev, “Structural changes in steel 10Kh9K3V1M1FBR due to creep,” Met. Sci. Heat Treat. 52, 118–127 (2010).CrossRef A. Yu. Kipelova, A. N. Belyakov, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev, “Structural changes in steel 10Kh9K3V1M1FBR due to creep,” Met. Sci. Heat Treat. 52, 118–127 (2010).CrossRef
15.
Zurück zum Zitat A. Fedoseeva, N. Dudova, and R. Kaibyshev, “Creep behavior and microstructure of a 9Cr–3Co–3W martensitic steel,” J. Mater. Sci. 52, 2974–2988 (2017).CrossRef A. Fedoseeva, N. Dudova, and R. Kaibyshev, “Creep behavior and microstructure of a 9Cr–3Co–3W martensitic steel,” J. Mater. Sci. 52, 2974–2988 (2017).CrossRef
16.
Zurück zum Zitat E. Tkachev, A. Belyakov, and R. Kaibyshev, “Creep strength breakdown and microstructure in a 9%Cr steel with high B and low N contents,” Mater. Sci. Eng., A 772, 138821 (2020).CrossRef E. Tkachev, A. Belyakov, and R. Kaibyshev, “Creep strength breakdown and microstructure in a 9%Cr steel with high B and low N contents,” Mater. Sci. Eng., A 772, 138821 (2020).CrossRef
17.
Zurück zum Zitat N. Dudova, R. Mishnev, and R. Kaibyshev, “Creep behavior of a 10% Cr heat-resistant martensitic steel with low nitrogen and high boron contents at 650°C,” Mater. Sci. Eng., A 766, 138353 (2019).CrossRef N. Dudova, R. Mishnev, and R. Kaibyshev, “Creep behavior of a 10% Cr heat-resistant martensitic steel with low nitrogen and high boron contents at 650°C,” Mater. Sci. Eng., A 766, 138353 (2019).CrossRef
18.
Zurück zum Zitat P. Yan, Zh. Liu, H. Bao, Y. Weng, and W. Liu, “Effect of microstructural evolution on high-temperature strength of 9Cr–3W–3Co martensitic heat resistant steel under different aging conditions,” Mater. Sci. Eng., A 588, 22–28 (2013).CrossRef P. Yan, Zh. Liu, H. Bao, Y. Weng, and W. Liu, “Effect of microstructural evolution on high-temperature strength of 9Cr–3W–3Co martensitic heat resistant steel under different aging conditions,” Mater. Sci. Eng., A 588, 22–28 (2013).CrossRef
19.
Zurück zum Zitat N. S. Nikolaeva, M. V. Leont’eva-Smirnova, and E. M. Mozhanov, “Effect of thermal aging for up to 22 thousand hours on the structural and phase state of ferritic–martensitic steels EK181 and ChS139,” Phys. Met. Metallogr. 123, 489–499 (2022).CrossRef N. S. Nikolaeva, M. V. Leont’eva-Smirnova, and E. M. Mozhanov, “Effect of thermal aging for up to 22 thousand hours on the structural and phase state of ferritic–martensitic steels EK181 and ChS139,” Phys. Met. Metallogr. 123, 489–499 (2022).CrossRef
Metadaten
Titel
The Effect of Prolonged Annealing on the Structural Stability of Nanoparticle-Hardened Low-Carbon 9% Cr–3% Co Steel
verfasst von
A. E. Fedoseeva
S. I. Degtyareva
Publikationsdatum
01.10.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 10/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22600889

Weitere Artikel der Ausgabe 10/2022

Physics of Metals and Metallography 10/2022 Zur Ausgabe