Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 9/2022

01.09.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Effect of the Initial State on the Structure Evolution of Hafnium Bronze under Annealing

verfasst von: R. M. Falahutdinov, V. V. Popov, E. N. Popova, A. V. Stolbovsky, E. V. Shorokhov, K. V. Gaan

Erschienen in: Physics of Metals and Metallography | Ausgabe 9/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In this paper, we study the structure evolution of hafnium bronze undrer annealing after hardening and severe plastic deformation by two methods: dynamic channel-angular pressing (DCAP) and high-pressure torsion (HPT). Severe plastic deformation of hardened bronze is shown to lead to significant hardening. Under the annealing of bronze, additional hardening occurs due to the precipitation of Cu5Hf particles. The bronze structure after severe plastic deformation has a high thermal stability; the maximum hardness is achieved upon annealing at 400°C after DCAP and 300–400°C after HPT.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
1.
Zurück zum Zitat O. E. Osintsev and V. N. Fedorov, Copper and Copper Alloys. Domestic and Foreign Brands (Mashinostroenie, Moscow, 2004) [in Russian]. O. E. Osintsev and V. N. Fedorov, Copper and Copper Alloys. Domestic and Foreign Brands (Mashinostroenie, Moscow, 2004) [in Russian].
2.
Zurück zum Zitat A. I. Belyaeva, I. V. Kolenov, A. A. Savchenko, A. A. Galuza, D. A. Aksenov, G. I. Raab, S. N. Faizova, V. S. Voitsenya, V. G. Konovalov, I. V. Ryzhkov, O. A. Skorik, S. I. Solodovchenko, and A. F. Bardamid, “Influence of grain size on the resistance to ion sputtering of mirrors from a low-alloy copper alloy system Cu–Cr–Zr,” Vopr. Atomn. Nauki i Tekhniki, Ser. Termoyadernyi Sintez 4, 50–59 (2011). A. I. Belyaeva, I. V. Kolenov, A. A. Savchenko, A. A. Galuza, D. A. Aksenov, G. I. Raab, S. N. Faizova, V. S. Voitsenya, V. G. Konovalov, I. V. Ryzhkov, O. A. Skorik, S. I. Solodovchenko, and A. F. Bardamid, “Influence of grain size on the resistance to ion sputtering of mirrors from a low-alloy copper alloy system Cu–Cr–Zr,” Vopr. Atomn. Nauki i Tekhniki, Ser. Termoyadernyi Sintez 4, 50–59 (2011).
3.
Zurück zum Zitat R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, “Structure, strength, and electric conductivity of a Cr copper-based alloy subjected to severe plastic deformation,” Phys. Met. Metallogr. 116 (2), 209–218 (2015). CrossRef R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, “Structure, strength, and electric conductivity of a Cr copper-based alloy subjected to severe plastic deformation,” Phys. Met. Metallogr. 116 (2), 209–218 (2015). CrossRef
4.
5.
Zurück zum Zitat K. Edalati, F. A. Bachmaier, V. A. Beloshenko, Y. Beygelzimer, V. D. Blank, W. J. Botta, K. Bryła, J. Čížek, S. Divinski, N. A. Enikeev, T. Estrin, G. Faraji, R. B. Figueiredo, M. Fuji, T. Furuta, T. Grosdidier, J. Gubicza, A. Hohenwarter, Z. Horita, J. Huot, Y. Ikoma, M. Janeček, M. Kawasaki, P. Král, S. Kuramoto, T. G. Langdon, D. R. Leiva, V. I. Levitas, A. Mazilkin, M. Mito, H. Miyamoto, T. Nishizaki, R. Pippan, V. V. Popov, E. N. Popova, G. Purcek, O. Renk, A. Révész, X. Sauvage, V. Sklenicka, W. Skrotzki, B. B. Straumal, S. Suwas, L. S. Toth, N. Tsuji, R. Z. Valiev, G. Wilde, M. J. Zehetbauer, and Z. Xinkun, “Nanomaterials by severe plastic deformation: review of historical developments and recent advances,” Mater. Res. Lett. 10 (4), 163–256 (2022). https://​doi.​org/​10.​1080/​21663831.​2022.​2029779 CrossRef K. Edalati, F. A. Bachmaier, V. A. Beloshenko, Y. Beygelzimer, V. D. Blank, W. J. Botta, K. Bryła, J. Čížek, S. Divinski, N. A. Enikeev, T. Estrin, G. Faraji, R. B. Figueiredo, M. Fuji, T. Furuta, T. Grosdidier, J. Gubicza, A. Hohenwarter, Z. Horita, J. Huot, Y. Ikoma, M. Janeček, M. Kawasaki, P. Král, S. Kuramoto, T. G. Langdon, D. R. Leiva, V. I. Levitas, A. Mazilkin, M. Mito, H. Miyamoto, T. Nishizaki, R. Pippan, V. V. Popov, E. N. Popova, G. Purcek, O. Renk, A. Révész, X. Sauvage, V. Sklenicka, W. Skrotzki, B. B. Straumal, S. Suwas, L. S. Toth, N. Tsuji, R. Z. Valiev, G. Wilde, M. J. Zehetbauer, and Z. Xinkun, “Nanomaterials by severe plastic deformation: review of historical developments and recent advances,” Mater. Res. Lett. 10 (4), 163–256 (2022). https://​doi.​org/​10.​1080/​21663831.​2022.​2029779 CrossRef
6.
Zurück zum Zitat M. Dopita, M. Janecek, R. Kuzel, H. J. Seifert, and S. Dobatkin, “Microstructure evolution of CuZr polycrystals processed by high-pressure torsion,” J. Mater. Sci. 45, 4631–4644 (2010). CrossRef M. Dopita, M. Janecek, R. Kuzel, H. J. Seifert, and S. Dobatkin, “Microstructure evolution of CuZr polycrystals processed by high-pressure torsion,” J. Mater. Sci. 45, 4631–4644 (2010). CrossRef
7.
Zurück zum Zitat D. V. Shangina, N. R. Bochvar, and S. V. Dobatkin, “Structure and properties of ultrafine-grained Cu–Cr alloys after high pressure torsion,” Mater. Sci. Forum 667– 669, 301–306 (2011). D. V. Shangina, N. R. Bochvar, and S. V. Dobatkin, “Structure and properties of ultrafine-grained Cu–Cr alloys after high pressure torsion,” Mater. Sci. Forum 667669, 301–306 (2011).
8.
Zurück zum Zitat S. V. Dobatkin, D. V. Shangina, N. R. Bochvar, and M. Janecek, “Effect of deformation schedules and initial states on structure and properties of Cu–0.18% Zr alloy after high-pressure torsion and heating,” Mater. Sci. Eng., A 598, 288–292 (2014). CrossRef S. V. Dobatkin, D. V. Shangina, N. R. Bochvar, and M. Janecek, “Effect of deformation schedules and initial states on structure and properties of Cu–0.18% Zr alloy after high-pressure torsion and heating,” Mater. Sci. Eng., A 598, 288–292 (2014). CrossRef
9.
Zurück zum Zitat G. Purcek, H. Yanar, D. V. Shangina, M. Demirtas, N. R. Bochvar, and S. V. Dobatkin, “Influence of high pressure torsion-induced grain refinement and subsequent aging on tribological properties of Cu–Cr–Zr alloy,” J. Alloys Compd. 742, 325–333 (2018). CrossRef G. Purcek, H. Yanar, D. V. Shangina, M. Demirtas, N. R. Bochvar, and S. V. Dobatkin, “Influence of high pressure torsion-induced grain refinement and subsequent aging on tribological properties of Cu–Cr–Zr alloy,” J. Alloys Compd. 742, 325–333 (2018). CrossRef
10.
Zurück zum Zitat A. Vinogradov, T. Ishida, K. Kitagawa, and V. I. Kopylov, “Effect of strain path on structure and mechanical behavior of ultra-fine grain Cu–Cr alloy produced by equal-channel angular pressing,” Acta Mater. 53, 2181–2192 (2005). CrossRef A. Vinogradov, T. Ishida, K. Kitagawa, and V. I. Kopylov, “Effect of strain path on structure and mechanical behavior of ultra-fine grain Cu–Cr alloy produced by equal-channel angular pressing,” Acta Mater. 53, 2181–2192 (2005). CrossRef
11.
Zurück zum Zitat J. Wongsa-Ngam, M. Kawasaki, and T. G. Langdon, “The development of hardness homogeneity in a Cu–Zr alloy processed by equal-channel angular pressing,” Mater. Sci. Eng., A 556, 526–532 (2012). CrossRef J. Wongsa-Ngam, M. Kawasaki, and T. G. Langdon, “The development of hardness homogeneity in a Cu–Zr alloy processed by equal-channel angular pressing,” Mater. Sci. Eng., A 556, 526–532 (2012). CrossRef
12.
Zurück zum Zitat D. Shangina, Yu. Maksimenkova, N. Bochvar, V. Serebryany, G. Raab, A. Vinogradov, W. Skrotzki, and S. Dobatkin, “Influence of alloying with hafnium on the microstructure, texture and properties of Cu–Cr alloy after equal channel angular pressing,” J. Mater. Sci. 51, 5493–5501 (2016). CrossRef D. Shangina, Yu. Maksimenkova, N. Bochvar, V. Serebryany, G. Raab, A. Vinogradov, W. Skrotzki, and S. Dobatkin, “Influence of alloying with hafnium on the microstructure, texture and properties of Cu–Cr alloy after equal channel angular pressing,” J. Mater. Sci. 51, 5493–5501 (2016). CrossRef
13.
Zurück zum Zitat A. P. Zhilyaev, A. Morozova, J. M. Cabrera, R. Kaibyshev, and T. G. Langdon, “Wear resistance and electroconductivity in a Cu–0.3Cr–0.5Zr alloy processed by ECAP,” J. Mater. Sci. 52, 305–313 (2017). CrossRef A. P. Zhilyaev, A. Morozova, J. M. Cabrera, R. Kaibyshev, and T. G. Langdon, “Wear resistance and electroconductivity in a Cu–0.3Cr–0.5Zr alloy processed by ECAP,” J. Mater. Sci. 52, 305–313 (2017). CrossRef
14.
Zurück zum Zitat V. I. Zel’dovich, S. V. Dobatkin, N. Yu. Frolova, I. V. Khomskaya, A. E. Kheifets, E. V. Shorokhov, P. A. Nasonov, “Mechanical properties and the structure of chromium–zirconium bronze after dynamic channel-angular pressing and subsequent aging,” Phys. Met. Metallogr. 117 (1), 74–82 (2016). CrossRef V. I. Zel’dovich, S. V. Dobatkin, N. Yu. Frolova, I. V. Khomskaya, A. E. Kheifets, E. V. Shorokhov, P. A. Nasonov, “Mechanical properties and the structure of chromium–zirconium bronze after dynamic channel-angular pressing and subsequent aging,” Phys. Met. Metallogr. 117 (1), 74–82 (2016). CrossRef
15.
Zurück zum Zitat I. V. Khomskaya, V. I. Zel’dovich, N. Yu. Frolova, A. E. Kheifets, E. V. Shorokhov, and D. N. Abdullina, “Effect of high-speed dynamic channel angular pressing and aging on the microstructure and properties of Cu–Cr–Zr alloys,” IOP Conf. Ser.: Mater. Sci. Eng. 447, 012007 (2018). I. V. Khomskaya, V. I. Zel’dovich, N. Yu. Frolova, A. E. Kheifets, E. V. Shorokhov, and D. N. Abdullina, “Effect of high-speed dynamic channel angular pressing and aging on the microstructure and properties of Cu–Cr–Zr alloys,” IOP Conf. Ser.: Mater. Sci. Eng. 447, 012007 (2018).
16.
Zurück zum Zitat A. E. Kheifets, I. V. Khomskaya, L. G. Korshunov, V. I. Zel’dovich, and N. Yu. Frolova, “Effect of high strain-rate deformation and aging temperature on the evolution of structure, microhardness, and wear resistance of low-alloyed Cu–Cr–Zr alloy,” Phys. Met. Metallogr. 119 (4), 402–411 (2018). CrossRef A. E. Kheifets, I. V. Khomskaya, L. G. Korshunov, V. I. Zel’dovich, and N. Yu. Frolova, “Effect of high strain-rate deformation and aging temperature on the evolution of structure, microhardness, and wear resistance of low-alloyed Cu–Cr–Zr alloy,” Phys. Met. Metallogr. 119 (4), 402–411 (2018). CrossRef
17.
Zurück zum Zitat I. V. Khomskaya, V. I. Zel’dovich, N. Yu. Frolova, D. N. Abdullina, and A. E. Kheifets, “Investigation of Cu 5Zr particles precipitation in Cu–Zr and Cu–Cr–Zr alloys subjected to quenching and high strain rate deformation,” Lett. Mater. 9 (4), 400–404 (2019). CrossRef I. V. Khomskaya, V. I. Zel’dovich, N. Yu. Frolova, D. N. Abdullina, and A. E. Kheifets, “Investigation of Cu 5Zr particles precipitation in Cu–Zr and Cu–Cr–Zr alloys subjected to quenching and high strain rate deformation,” Lett. Mater. 9 (4), 400–404 (2019). CrossRef
18.
Zurück zum Zitat K. Oh-ishi, Z. Horita, D. J. Smitz, R. Z. Valiev, M. Nemoto, and T. G. Langdon, “Fabrication and thermal stability of a nanocrystalline Ni–Al–Cr alloy: comparison with pure Cu and Ni,” J. Mater. Sci. 14, 4200–4207 (1999). K. Oh-ishi, Z. Horita, D. J. Smitz, R. Z. Valiev, M. Nemoto, and T. G. Langdon, “Fabrication and thermal stability of a nanocrystalline Ni–Al–Cr alloy: comparison with pure Cu and Ni,” J. Mater. Sci. 14, 4200–4207 (1999).
19.
Zurück zum Zitat H. W. Zhang, X. Huang, R. Pippan, and N. Hansen, “Thermal behavior of Ni (99.967 and 99.5% purity) deformed to an ultra-high strain by high pressure torsion,” Acta Mater. 58, 1698–1707 (2010). CrossRef H. W. Zhang, X. Huang, R. Pippan, and N. Hansen, “Thermal behavior of Ni (99.967 and 99.5% purity) deformed to an ultra-high strain by high pressure torsion,” Acta Mater. 58, 1698–1707 (2010). CrossRef
20.
Zurück zum Zitat L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, Yu. G. Krasnoperova, and N. N. Resnina, “Effect of dynamic recovery on structure formation in nickel upon high-pressure torsion and subsequent annealing,” Mater. Sci. Eng., A 639, 155–164 (2015). CrossRef L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, Yu. G. Krasnoperova, and N. N. Resnina, “Effect of dynamic recovery on structure formation in nickel upon high-pressure torsion and subsequent annealing,” Mater. Sci. Eng., A 639, 155–164 (2015). CrossRef
21.
Zurück zum Zitat P. V. Kuznetsov, T. V. Rakhmatulina, I. V. Belyaeva, and A. V. Korznikov, “Energy of internal interfaces as a characteristic of the structural evolution of ultrafine-grained copper and nickel after annealing,” Phys. Met. Metallogr. 118 (3), 241–248 (2017). CrossRef P. V. Kuznetsov, T. V. Rakhmatulina, I. V. Belyaeva, and A. V. Korznikov, “Energy of internal interfaces as a characteristic of the structural evolution of ultrafine-grained copper and nickel after annealing,” Phys. Met. Metallogr. 118 (3), 241–248 (2017). CrossRef
22.
Zurück zum Zitat A. Vinogradov, V. Patlan, G. Suzuki, K. Kitagawa, and V. I. Kopylov, “Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing,” Acta Mater. 50, 1639–1651 (2002). CrossRef A. Vinogradov, V. Patlan, G. Suzuki, K. Kitagawa, and V. I. Kopylov, “Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing,” Acta Mater. 50, 1639–1651 (2002). CrossRef
23.
Zurück zum Zitat D. V. Shan’gina, N. R. Bochvar, and S. V. Dobatkin, “Structure and properties of Cu–Cr alloys subjected to shear under pressure and subsequent heating,” Russ. Metall., No. 6, 66–72 (2010). D. V. Shan’gina, N. R. Bochvar, and S. V. Dobatkin, “Structure and properties of Cu–Cr alloys subjected to shear under pressure and subsequent heating,” Russ. Metall., No. 6, 66–72 (2010).
24.
Zurück zum Zitat V. V. Popov, E. N. Popova, A. V. Stolbovskii, R. M. Fala-khutdinov, S. A. Murzinova, E. V. Shorokhov, and K. V. Gaan, “Influence of the initial treatment on the structure of hafnium bronze upon high-speed pressing,” Phys. Met. Metallogr. 121 (5), 452–459 (2020). CrossRef V. V. Popov, E. N. Popova, A. V. Stolbovskii, R. M. Fala-khutdinov, S. A. Murzinova, E. V. Shorokhov, and K. V. Gaan, “Influence of the initial treatment on the structure of hafnium bronze upon high-speed pressing,” Phys. Met. Metallogr. 121 (5), 452–459 (2020). CrossRef
25.
Zurück zum Zitat E. N. Popova, V. V. Popov, E. P. Romanov, N. E. Hlebova, and A. K. Shikov, “Effect of deformation and annealing on texture parameters of composite Cu–Nb wire,” Scr. Mater. 51, 727–731 (2004). CrossRef E. N. Popova, V. V. Popov, E. P. Romanov, N. E. Hlebova, and A. K. Shikov, “Effect of deformation and annealing on texture parameters of composite Cu–Nb wire,” Scr. Mater. 51, 727–731 (2004). CrossRef
Metadaten
Titel
The Effect of the Initial State on the Structure Evolution of Hafnium Bronze under Annealing
verfasst von
R. M. Falahutdinov
V. V. Popov
E. N. Popova
A. V. Stolbovsky
E. V. Shorokhov
K. V. Gaan
Publikationsdatum
01.09.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 9/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22090034

Weitere Artikel der Ausgabe 9/2022

Physics of Metals and Metallography 9/2022 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Fine Structure of MgB2 Alloyed with Y and Gd