Skip to main content
Erschienen in:

01.10.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Effect of Thermomechanical Treatment on the Structure and Mechanical Properties of the Ti49.5Ni50.5 Shape-Memory Alloy

verfasst von: N. N. Kuranova, V. V. Makarov, V. G. Pushin

Erschienen in: Physics of Metals and Metallography | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of thermomechanical treatment on the structure and phase transformations of the Ti–50.5 at % Ni shape-memory alloy was studied. The data on the specific features of mechanical properties and character of fracture in the initial ultrafine-grained (UFG) alloy were gained by tension tests in combination with optical and electron microscopy and X-ray diffraction analysis. The UFG alloy structure was created by multipass plastic rolling deformation. The alloy was established to have high levels of its mechanical properties (ultimate strength of up to 1400 MPa at a relative elongation of more than 25%) due to the revealed effect of a complex reaction: recrystallization with the formation of a UFG structure and associated highly dispersed heterogeneous decomposition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shape Memory Effects in Alloys, Ed. by J. Perkins (Plenum, London, 1975). Shape Memory Effects in Alloys, Ed. by J. Perkins (Plenum, London, 1975).
2.
Zurück zum Zitat K. Ootsuka, K. Simidzu, Yu. Sudzuki, Yu. Sekiguti, Ts. Tadaki, T. Khomma, S. Miyadzaki, Shape Memory Alloys (Metallurgiya, Moscow, 1990) [in Russian]. K. Ootsuka, K. Simidzu, Yu. Sudzuki, Yu. Sekiguti, Ts. Tadaki, T. Khomma, S. Miyadzaki, Shape Memory Alloys (Metallurgiya, Moscow, 1990) [in Russian].
3.
Zurück zum Zitat Engineering Aspects of Shape Memory Alloys, Ed. by T. W. Duering, K. L. Melton, D. Stockel, and C. M. Wayman (Butterworth-Heineman, London, 1990). Engineering Aspects of Shape Memory Alloys, Ed. by T. W. Duering, K. L. Melton, D. Stockel, and C. M. Wayman (Butterworth-Heineman, London, 1990).
4.
Zurück zum Zitat V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992) [in Russian]. V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992) [in Russian].
5.
Zurück zum Zitat V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pre-Transitional Phenomena and Martensitic Transformations (UrBr RAS, Yekaterinburg, 1998) [in Russian]. V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pre-Transitional Phenomena and Martensitic Transformations (UrBr RAS, Yekaterinburg, 1998) [in Russian].
6.
Zurück zum Zitat E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, “Elastocaloric effect associated with the martensitic transition in shape-memory alloys,” Phys. Rev. Lett. 100, 125901 (2008).CrossRef E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, “Elastocaloric effect associated with the martensitic transition in shape-memory alloys,” Phys. Rev. Lett. 100, 125901 (2008).CrossRef
7.
Zurück zum Zitat J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, and I. Takeuchi, “Demonstration of high efficiency elastocaloric cooling with large δT using NiTi wires,” Appl. Phys. Lett. 101, 073904 (2012).CrossRef J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, and I. Takeuchi, “Demonstration of high efficiency elastocaloric cooling with large δT using NiTi wires,” Appl. Phys. Lett. 101, 073904 (2012).CrossRef
8.
Zurück zum Zitat J. Cui, “Shape memory alloys and their applications in power generation and refrigeration,” In Mesoscopic Phenomena in Multifunctional Materials, Ed. by A. Saxena and A. Planes (Springer, Berlin, 2014), pp. 289–307. J. Cui, “Shape memory alloys and their applications in power generation and refrigeration,” In Mesoscopic Phenomena in Multifunctional Materials, Ed. by A. Saxena and A. Planes (Springer, Berlin, 2014), pp. 289–307.
9.
Zurück zum Zitat S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and I. Yu. Khmelevskaya, “Application of titanium nickelide–based alloys in medicine,” Phys. Met. Metallogr. 97, 56–96 (2004). S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and I. Yu. Khmelevskaya, “Application of titanium nickelide–based alloys in medicine,” Phys. Met. Metallogr. 97, 56–96 (2004).
10.
Zurück zum Zitat J. Wilson and M. Weselowsky, “Shape memory alloys for seismic response modification: A state-of-the-art review,” Earthquake Spectra 21, 569–601 (2005).CrossRef J. Wilson and M. Weselowsky, “Shape memory alloys for seismic response modification: A state-of-the-art review,” Earthquake Spectra 21, 569–601 (2005).CrossRef
11.
Zurück zum Zitat T. Yoneyama and S. Miyazaki, Shape Memory Alloys for Medical Applications (Wordhead, Cambridge, 2009).CrossRef T. Yoneyama and S. Miyazaki, Shape Memory Alloys for Medical Applications (Wordhead, Cambridge, 2009).CrossRef
12.
Zurück zum Zitat J. Dong, C. Cai, and A. O’Keil, “Overview of potential and existing applications of shape memory alloys in bridges,” J. Bridge Eng. 16, 305–315 (2011).CrossRef J. Dong, C. Cai, and A. O’Keil, “Overview of potential and existing applications of shape memory alloys in bridges,” J. Bridge Eng. 16, 305–315 (2011).CrossRef
13.
Zurück zum Zitat V. G. Pushin, “Alloys with a thermomechanical memory: Structure, properties, and application,” Phys. Met. Metallogr. 90 (Suppl. 1), S68–S95 (2000). V. G. Pushin, “Alloys with a thermomechanical memory: Structure, properties, and application,” Phys. Met. Metallogr. 90 (Suppl. 1), S68–S95 (2000).
14.
Zurück zum Zitat V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, “Features of structure and phase transformations in shape memory TiNi-based alloys after severe plastic deformation,” Ann. Chim. Sci. Mat. 27, 77–88 (2002).CrossRef V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, “Features of structure and phase transformations in shape memory TiNi-based alloys after severe plastic deformation,” Ann. Chim. Sci. Mat. 27, 77–88 (2002).CrossRef
15.
Zurück zum Zitat R. Z. Valiev and V. G. Pushin, “Bulk Nanostructured metallic materials: Production, structure, properties and functioning,” Phys. Met. Metallogr. 94, S1–S4 (2002). R. Z. Valiev and V. G. Pushin, “Bulk Nanostructured metallic materials: Production, structure, properties and functioning,” Phys. Met. Metallogr. 94, S1–S4 (2002).
16.
Zurück zum Zitat V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, “Development of methods of severe plastic deformation for the production of high-strength alloys based on titanium nickelide with a shape memory effect,” Phys. Met. Metallogr. 94, S54–S68 (2002). V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, “Development of methods of severe plastic deformation for the production of high-strength alloys based on titanium nickelide with a shape memory effect,” Phys. Met. Metallogr. 94, S54–S68 (2002).
17.
Zurück zum Zitat V. G. Pushin and R. Z. Valiev, “The nanostructured TiNi shape-memory alloys: New properties and applications,” Solid State Phenom. 94, 13–24 (2003).CrossRef V. G. Pushin and R. Z. Valiev, “The nanostructured TiNi shape-memory alloys: New properties and applications,” Solid State Phenom. 94, 13–24 (2003).CrossRef
18.
Zurück zum Zitat V. G. Pushin, R. Z. Valiev, and L. I. Yurchenko, “Processing of nanostructured TiNi-shape memory alloys: Methods, structures, properties, application,” J. Phys. IV 112, 659–662 (2003). V. G. Pushin, R. Z. Valiev, and L. I. Yurchenko, “Processing of nanostructured TiNi-shape memory alloys: Methods, structures, properties, application,” J. Phys. IV 112, 659–662 (2003).
19.
Zurück zum Zitat V. G. Pushin, “Structure, properties, and application of nanostructures shape memory TiNi-based alloys,” in Nanomaterials by Severe Plastic Deformation (Wiley, Weinheim, 2004), pp. 822–828. V. G. Pushin, “Structure, properties, and application of nanostructures shape memory TiNi-based alloys,” in Nanomaterials by Severe Plastic Deformation (Wiley, Weinheim, 2004), pp. 822–828.
20.
Zurück zum Zitat V. Brailovski, I. Yu. Khmelevskaya, S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and R. Z. Valiev, “Foundation of heat and thermomechanical treatments and their on the structure and properties of titanium nickelide-based alloys,” Phys. Met. Metallogr. 97, S3–S55 (2004). V. Brailovski, I. Yu. Khmelevskaya, S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and R. Z. Valiev, “Foundation of heat and thermomechanical treatments and their on the structure and properties of titanium nickelide-based alloys,” Phys. Met. Metallogr. 97, S3–S55 (2004).
21.
Zurück zum Zitat V. G. Pushin, R. Z. Valiev, Y. T. Zhu, D. V. Gunderov, N. I. Kourov, T. E. Kuntsevich, A. N. Uksusnikov, and L. I. Yurchenko, “Effect of severe plastic deformation on the behavior of Ti–Ni shape memory alloys,” Mater. Trans. 47, 694–697 (2006).CrossRef V. G. Pushin, R. Z. Valiev, Y. T. Zhu, D. V. Gunderov, N. I. Kourov, T. E. Kuntsevich, A. N. Uksusnikov, and L. I. Yurchenko, “Effect of severe plastic deformation on the behavior of Ti–Ni shape memory alloys,” Mater. Trans. 47, 694–697 (2006).CrossRef
22.
Zurück zum Zitat R. Z. Valiev, D. V. Gunderov, and V. G. Pushin, “The new SPD processing routes to fabricate bulk nanostructured materials,” in Ultrafine Grained Materials IV. TMS (The Minerals, Metals & Materials Society), Ed. By Y. T. Zhu, T. G. Langdon, S. L. Semiatin, Z. Horita, M. J. Zehetbauer, and T. C. Lowe (Warrendale, 2006), pp. 105–112. R. Z. Valiev, D. V. Gunderov, and V. G. Pushin, “The new SPD processing routes to fabricate bulk nanostructured materials,” in Ultrafine Grained Materials IV. TMS (The Minerals, Metals & Materials Society), Ed. By Y. T. Zhu, T. G. Langdon, S. L. Semiatin, Z. Horita, M. J. Zehetbauer, and T. C. Lowe (Warrendale, 2006), pp. 105–112.
23.
Zurück zum Zitat V. G. Pushin, R. Z. Valiev, Y. T. Zhu, S. Prockoshkin, D. V. Gunderov, and L. I. Yurchenko, “Effect of equal channel angular pressing and repeated rolling on structure, phase transformation and properties of TiNi shape memory alloys,” Mater. Sci. Forum 503–504, 539–544 (2006).CrossRef V. G. Pushin, R. Z. Valiev, Y. T. Zhu, S. Prockoshkin, D. V. Gunderov, and L. I. Yurchenko, “Effect of equal channel angular pressing and repeated rolling on structure, phase transformation and properties of TiNi shape memory alloys,” Mater. Sci. Forum 503504, 539–544 (2006).CrossRef
24.
Zurück zum Zitat R. Valiev, D. Gunderov, E. Prokofiev, V. Pushin, and Yu. Zhu, “Nanostructuring of TiNi alloy by SPD processing for advanced properties,” Mater. Trans. 49, 97–101 (2008).CrossRef R. Valiev, D. Gunderov, E. Prokofiev, V. Pushin, and Yu. Zhu, “Nanostructuring of TiNi alloy by SPD processing for advanced properties,” Mater. Trans. 49, 97–101 (2008).CrossRef
25.
Zurück zum Zitat N. N. Kuranova, D. V. Gunderov, A. N. Uksusnikov, A. V. Luk’yanov, L. I. Yurchenko, E. A. Prokof’ev, V. G. Pushin, and R. Z. Valiev, “Effect of heat treatment on the structural and phase transformations and mechanical properties of TiNi alloy subjected to severe plastic deformation by Torsion,” Phys. Met. Metallogr. 108, 556–568 (2009).CrossRef N. N. Kuranova, D. V. Gunderov, A. N. Uksusnikov, A. V. Luk’yanov, L. I. Yurchenko, E. A. Prokof’ev, V. G. Pushin, and R. Z. Valiev, “Effect of heat treatment on the structural and phase transformations and mechanical properties of TiNi alloy subjected to severe plastic deformation by Torsion,” Phys. Met. Metallogr. 108, 556–568 (2009).CrossRef
26.
Zurück zum Zitat S. Prokoshkin, V. Brailivski, A. Korotitskiy, K. Inaekyan, S. Dubinsky, M. Filonov, and M. Petrzhic, “Formation of nanostructures in thermo-mechanically-treated Ti–Ni and Ti–Nb–(Zr,Ta) SMAs and their roles in martensite crystal lattice changes and mechanical behavior,” J. Alloy. Comp. 509, 2066–2075 (2011). S. Prokoshkin, V. Brailivski, A. Korotitskiy, K. Inaekyan, S. Dubinsky, M. Filonov, and M. Petrzhic, “Formation of nanostructures in thermo-mechanically-treated Ti–Ni and Ti–Nb–(Zr,Ta) SMAs and their roles in martensite crystal lattice changes and mechanical behavior,” J. Alloy. Comp. 509, 2066–2075 (2011).
27.
Zurück zum Zitat K. Tsuchiya, Y. Hada, T. Koyano, K. Nakajima, M. Ohnuma, T. Koike, Y. Todaka, and M. Umimota, “Production of TiNi amorphous/nanocrystalline wires with high-strength and elastic modulus by severe cold drawing,” Scr. Mater. 60, 749–752 (2009).CrossRef K. Tsuchiya, Y. Hada, T. Koyano, K. Nakajima, M. Ohnuma, T. Koike, Y. Todaka, and M. Umimota, “Production of TiNi amorphous/nanocrystalline wires with high-strength and elastic modulus by severe cold drawing,” Scr. Mater. 60, 749–752 (2009).CrossRef
28.
Zurück zum Zitat A. I. Lotkov, V. N. Grishkov, A. A. Baturin, E. F. Dudarev, D. Yu. Zhapova, and V. N. Timkin, “The effect of warm deformation by abc-pressing on the mechanical properties of titanium nickelide,” Lett. Mater. 5, 170–174 (2015).CrossRef A. I. Lotkov, V. N. Grishkov, A. A. Baturin, E. F. Dudarev, D. Yu. Zhapova, and V. N. Timkin, “The effect of warm deformation by abc-pressing on the mechanical properties of titanium nickelide,” Lett. Mater. 5, 170–174 (2015).CrossRef
29.
Zurück zum Zitat V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials 12, 2616–2640 (2019).CrossRef V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials 12, 2616–2640 (2019).CrossRef
Metadaten
Titel
The Effect of Thermomechanical Treatment on the Structure and Mechanical Properties of the Ti49.5Ni50.5 Shape-Memory Alloy
verfasst von
N. N. Kuranova
V. V. Makarov
V. G. Pushin
Publikationsdatum
01.10.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 10/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22600993

Weitere Artikel der Ausgabe 10/2022

Physics of Metals and Metallography 10/2022 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

X-ray Analysis of Short-Range Order in Iron–Gallium Solid Solutions