Skip to main content
Erschienen in: Meccanica 4/2016

16.07.2015

The effect of weak-inertia on droplet formation phenomena in T-junction microchannel

verfasst von: Milad Azarmanesh, Mousa Farhadi

Erschienen in: Meccanica | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present droplet formation in a T-junction microfluidic device in five different regimes of squeezing, dripping, transition, jetting and parallel. Droplet is created as a result of interaction of two immiscible liquids. Effects of Capillary number (Ca) and Reynolds number (Re) are investigated which changes the regime of droplet formation and creates rotational flow inside droplet, respectively. Simulations were done with the open source code Gerris using volume of fluid method and adaptive mesh refinement techniques in order to track interface properly. Two kinds of jetting regimes, i.e., stable and unstable, were simulated in this work. For higher Re number the parallel regime is observed so Re number is limited to 25. This study shows that the results of Re > 1 have some differences compared with those of Re < 1. Using the effect of inertial forces, transition regime is limited to a range of Ca number. Simulations indicate that new vortices are created due to effect of inertial forces at a moment after droplet detachment, while it is fully creeping flow for Re < 1. The vortices which have appeared at the tail of droplet will become weaker with time. Also, at the downstream, two rotational flows were observed in droplet for both Re > 1 and Re < 1 which are due to wall shear stresses. Droplets with rotational flow can increase diffusivity, which is motivation of this work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tabeling P (2010) Introduction to microfluidics. Oxford University Press, Oxford Tabeling P (2010) Introduction to microfluidics. Oxford University Press, Oxford
2.
Zurück zum Zitat Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163ADSCrossRef Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163ADSCrossRef
3.
Zurück zum Zitat Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437–446CrossRef Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437–446CrossRef
4.
Zurück zum Zitat van Steijn V, Kreutzer MT, Kleijn CR (2007) μ-PIV study of the formation of segmented flow in microfluidic T-junctions. Chem Eng Sci 62:7505–7514CrossRef van Steijn V, Kreutzer MT, Kleijn CR (2007) μ-PIV study of the formation of segmented flow in microfluidic T-junctions. Chem Eng Sci 62:7505–7514CrossRef
5.
Zurück zum Zitat Li X-B, Li F-C, Yang J-C, Kinoshita H, Oishi M, Oshima M (2012) Study on the mechanism of droplet formation in T-junction microchannel. Chem Eng Sci 69:340–351CrossRef Li X-B, Li F-C, Yang J-C, Kinoshita H, Oishi M, Oshima M (2012) Study on the mechanism of droplet formation in T-junction microchannel. Chem Eng Sci 69:340–351CrossRef
6.
Zurück zum Zitat Oishi M, Kinoshita H, Fujii T, Oshima M (2009) Confocal micro-PIV measurement of droplet formation in a T-shaped micro-junction. J Phys Conf Ser 147:012061 Oishi M, Kinoshita H, Fujii T, Oshima M (2009) Confocal micro-PIV measurement of droplet formation in a T-shaped micro-junction. J Phys Conf Ser 147:012061
7.
Zurück zum Zitat Xu J, Li S, Tan J, Luo G (2008) Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid Nanofluid 5:711–717CrossRef Xu J, Li S, Tan J, Luo G (2008) Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid Nanofluid 5:711–717CrossRef
8.
Zurück zum Zitat Yeom S, Lee SY (2011) Size prediction of drops formed by dripping at a micro T-junction in liquid–liquid mixing. Exp Therm Fluid Sci 35:387–394CrossRef Yeom S, Lee SY (2011) Size prediction of drops formed by dripping at a micro T-junction in liquid–liquid mixing. Exp Therm Fluid Sci 35:387–394CrossRef
9.
Zurück zum Zitat van Steijn V, Kleijn CR, Kreutzer MT (2010) Predictive model for the size of bubbles and droplets created in microfluidic T-junctions. Lab Chip 10:2513–2518CrossRef van Steijn V, Kleijn CR, Kreutzer MT (2010) Predictive model for the size of bubbles and droplets created in microfluidic T-junctions. Lab Chip 10:2513–2518CrossRef
10.
Zurück zum Zitat De Menech M, Garstecki P, Jousse F, Stone H (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595:141–161ADSMATH De Menech M, Garstecki P, Jousse F, Stone H (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595:141–161ADSMATH
11.
Zurück zum Zitat Gupta A, Kumar R (2010) Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluid Nanofluid 8:799–812CrossRef Gupta A, Kumar R (2010) Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluid Nanofluid 8:799–812CrossRef
12.
Zurück zum Zitat Wang W, Liu Z, Jin Y, Cheng Y (2011) LBM simulation of droplet formation in micro-channels. Chem Eng J 173:828–836CrossRef Wang W, Liu Z, Jin Y, Cheng Y (2011) LBM simulation of droplet formation in micro-channels. Chem Eng J 173:828–836CrossRef
13.
Zurück zum Zitat Yang H, Zhou Q, Fan L-S (2013) Three-dimensional numerical study on droplet formation and cell encapsulation process in a micro T-junction. Chem Eng Sci 87:100–110CrossRef Yang H, Zhou Q, Fan L-S (2013) Three-dimensional numerical study on droplet formation and cell encapsulation process in a micro T-junction. Chem Eng Sci 87:100–110CrossRef
14.
Zurück zum Zitat Sivasamy J, Wong T-N, Nguyen N-T, Kao LT-H (2011) An investigation on the mechanism of droplet formation in a microfluidic T-junction. Microfluid Nanofluid 11:1–10CrossRef Sivasamy J, Wong T-N, Nguyen N-T, Kao LT-H (2011) An investigation on the mechanism of droplet formation in a microfluidic T-junction. Microfluid Nanofluid 11:1–10CrossRef
15.
Zurück zum Zitat Yan Y, Guo D, Wen S (2012) Numerical simulation of junction point pressure during droplet formation in a microfluidic T-junction. Chem Eng Sci 84:591–601CrossRef Yan Y, Guo D, Wen S (2012) Numerical simulation of junction point pressure during droplet formation in a microfluidic T-junction. Chem Eng Sci 84:591–601CrossRef
16.
Zurück zum Zitat Bashir S, Rees JM, Zimmerman WB (2014) Investigation of pressure profile evolution during confined microdroplet formation using a two-phase level set method. Int J Multiph Flow 60:40–49CrossRef Bashir S, Rees JM, Zimmerman WB (2014) Investigation of pressure profile evolution during confined microdroplet formation using a two-phase level set method. Int J Multiph Flow 60:40–49CrossRef
18.
Zurück zum Zitat Popinet S (2003) Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J Comput Phys 190:572–600ADSMathSciNetCrossRefMATH Popinet S (2003) Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J Comput Phys 190:572–600ADSMathSciNetCrossRefMATH
19.
Zurück zum Zitat Chen X, Yang V (2014) Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions. J Comput Phys 269:22–39ADSMathSciNetCrossRef Chen X, Yang V (2014) Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions. J Comput Phys 269:22–39ADSMathSciNetCrossRef
20.
Zurück zum Zitat Chen X, Ma D, Yang V, Popinet S (2013) High-fidelity simulations of impinging jet atomization. At Sprays 23:1079–1101CrossRef Chen X, Ma D, Yang V, Popinet S (2013) High-fidelity simulations of impinging jet atomization. At Sprays 23:1079–1101CrossRef
Metadaten
Titel
The effect of weak-inertia on droplet formation phenomena in T-junction microchannel
verfasst von
Milad Azarmanesh
Mousa Farhadi
Publikationsdatum
16.07.2015
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 4/2016
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-015-0245-6

Weitere Artikel der Ausgabe 4/2016

Meccanica 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.