Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 6/2022

01.06.2022 | STRENGTH AND PLASTICITY

The Effect of Yittrium and Zirconium on the Structure and Properties of the Al–5Si–1.3Cu–0.5Mg Alloy

verfasst von: R. Yu. Barkov, M. G. Khomutov, M. V. Glavatskikh, A. V. Pozdniakov

Erschienen in: Physics of Metals and Metallography | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The structure and the properties of the cast Al–5Si–1.3Cu–0.5Mg–0.15Zr–0.15Y alloy have been investigated after the quenching and aging of the alloy ingot and deformed sheet. The introduction of zirconium and yttrium additives slightly modifies and increases the uniformity of the grain structure of the cast alloy. The Al8Cu4Y and Al11Cu2Y2Si2 phase particles, which formed during solidification, do not change their morphology and do not dissolve upon homogenization. The yield strength of the alloy is 30–40 MPa higher than that of the alloy without additives, both at room temperature and 200°C because of the smaller grain size and solidification-induced phases. The yield strength in the alloy when quenched after rolling and aged is 289–296 MPa; the tensile strength is 374–387 MPa and the relative elongation is 13.5–15.5%. To enhance the service characteristics, especially at elevated temperatures, the alloying of silumins with low-cost yttrium in combination with zirconium offers an advantage over alloying with erbium.
Literatur
1.
Zurück zum Zitat E. Nes, “Precipitation of the metastable cubic Al3Zr-phase in subperitectic Al–Zr alloys,”Acta Metall. 20, 499–506 (1972). CrossRef E. Nes, “Precipitation of the metastable cubic Al3Zr-phase in subperitectic Al–Zr alloys,”Acta Metall. 20, 499–506 (1972). CrossRef
2.
Zurück zum Zitat Ü Xin-yu, G. Er-jun, P. Rometsch, and W. Li-juan, “Effect of one-step and two-step homogenization treatments on distribution of Al 3Zr dispersoids in commercial AA7150 aluminium alloy,” Trans. Nonferrous Met. Soc. China 22, 2645–2651 (2012). CrossRef Ü Xin-yu, G. Er-jun, P. Rometsch, and W. Li-juan, “Effect of one-step and two-step homogenization treatments on distribution of Al 3Zr dispersoids in commercial AA7150 aluminium alloy,” Trans. Nonferrous Met. Soc. China 22, 2645–2651 (2012). CrossRef
3.
Zurück zum Zitat K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600°C,” Acta Mater. 56, 1182–1195 (2008). CrossRef K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600°C,” Acta Mater. 56, 1182–1195 (2008). CrossRef
4.
Zurück zum Zitat K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425°C,” Acta Mater. 56, 114–127 (2008). CrossRef K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425°C,” Acta Mater. 56, 114–127 (2008). CrossRef
5.
Zurück zum Zitat A. V. Mikhaylovskaya, V. K. Portnoy, A. G. Mochugovskiy, M. Yu. Zadorozhnyy, N. Yu. Tabachkova, and I. S. Golovin, “Effect of homogenisation treatment on precipitation, recrystallisation and properties of Al–3% Mg–TM alloys (TM = Mn, Cr, Zr),” Mater. Des. 109, 197–208 (2016). CrossRef A. V. Mikhaylovskaya, V. K. Portnoy, A. G. Mochugovskiy, M. Yu. Zadorozhnyy, N. Yu. Tabachkova, and I. S. Golovin, “Effect of homogenisation treatment on precipitation, recrystallisation and properties of Al–3% Mg–TM alloys (TM = Mn, Cr, Zr),” Mater. Des. 109, 197–208 (2016). CrossRef
6.
Zurück zum Zitat A. V. Mikhaylovskaya, A. G. Mochugovskiy, V. S. Levchenko, N. Yu. Tabachkova, W. Mufalo, and V. K. Portnoy, “Precipitation behavior of L12 Al 3Zr phase in Al–Mg–Zr alloy,” Mater. Charact. 139, 30–37 (2018). CrossRef A. V. Mikhaylovskaya, A. G. Mochugovskiy, V. S. Levchenko, N. Yu. Tabachkova, W. Mufalo, and V. K. Portnoy, “Precipitation behavior of L12 Al 3Zr phase in Al–Mg–Zr alloy,” Mater. Charact. 139, 30–37 (2018). CrossRef
7.
Zurück zum Zitat Y. Ma and R. S. Mishra, “Development of ultrafine-grained microstructure and low temperature (0.48 T m) superplasticity in friction stir processed Al–Mg–Zr,” Scr. Mater. 53, 75–80 (2005). CrossRef Y. Ma and R. S. Mishra, “Development of ultrafine-grained microstructure and low temperature (0.48 T m) superplasticity in friction stir processed Al–Mg–Zr,” Scr. Mater. 53, 75–80 (2005). CrossRef
8.
Zurück zum Zitat C. B. Fuller and D. N. Seidman, “Temporal evolution of the nanostructure of Al 3(Sc,Zr) alloys: Part II-coarsening of Al 3(Sc 1 – xZr x) precipitates,” Acta Mater. 53 (20), 5415–5428 (2005). CrossRef C. B. Fuller and D. N. Seidman, “Temporal evolution of the nanostructure of Al 3(Sc,Zr) alloys: Part II-coarsening of Al 3(Sc 1 – xZr x) precipitates,” Acta Mater. 53 (20), 5415–5428 (2005). CrossRef
9.
Zurück zum Zitat K. E. Knipling, R. A. Karnesky, C. P. Lee, and D. N. Seidman, “Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at %) alloys during isochronal aging,” Acta Mater. 58 (15), 5184–5195 (2010). CrossRef K. E. Knipling, R. A. Karnesky, C. P. Lee, and D. N. Seidman, “Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at %) alloys during isochronal aging,” Acta Mater. 58 (15), 5184–5195 (2010). CrossRef
10.
Zurück zum Zitat V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Evolution of structure and mechanical properties of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets after accumulated deformation during rolling,” Phys. Met Metallogr. 117 (11), 1163–1169 (2016). CrossRef V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Evolution of structure and mechanical properties of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets after accumulated deformation during rolling,” Phys. Met Metallogr. 117 (11), 1163–1169 (2016). CrossRef
11.
Zurück zum Zitat V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Strength and substructure of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets,” Phys. Met Metallogr. 118 (4), 407–414 (2017). CrossRef V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Strength and substructure of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets,” Phys. Met Metallogr. 118 (4), 407–414 (2017). CrossRef
12.
Zurück zum Zitat M. Colombo, E. Gariboldi, and A. Morri, “Er addition to Al–Si–Mg-based casting alloy: effects on microstructure, room and high temperature mechanical properties,” J. Alloys. Compd. 708, 1234–1244 (2017). CrossRef M. Colombo, E. Gariboldi, and A. Morri, “Er addition to Al–Si–Mg-based casting alloy: effects on microstructure, room and high temperature mechanical properties,” J. Alloys. Compd. 708, 1234–1244 (2017). CrossRef
13.
Zurück zum Zitat M. Colombo, E. Gariboldi, and A. Morri, “Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al–7Si–0.4Mg alloy modified with 0.25% Er,” Mater. Sci. Eng., A 713, 151–160 (2018). CrossRef M. Colombo, E. Gariboldi, and A. Morri, “Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al–7Si–0.4Mg alloy modified with 0.25% Er,” Mater. Sci. Eng., A 713, 151–160 (2018). CrossRef
14.
Zurück zum Zitat R. Yu. Barkov, A. G. Mochugovskiy, M. G. Khomutov, and A. V. Pozdniakov, “Effect of Zr and Er small additives on phase composition and mechanical properties of Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. 122 (2), 161–168 (2021). CrossRef R. Yu. Barkov, A. G. Mochugovskiy, M. G. Khomutov, and A. V. Pozdniakov, “Effect of Zr and Er small additives on phase composition and mechanical properties of Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. 122 (2), 161–168 (2021). CrossRef
15.
Zurück zum Zitat R. Yu. Barkov, A. S. Prosviryakov, M. G. Khomutov, and A. V. Pozdniakov, “Effect of the Zr and Er Content on the Structure and Properties of the Al–5Si–1.3Cu–0.5Mg Alloy,” Phys. Met Metallogr. 122, 614–620 (2021). CrossRef R. Yu. Barkov, A. S. Prosviryakov, M. G. Khomutov, and A. V. Pozdniakov, “Effect of the Zr and Er Content on the Structure and Properties of the Al–5Si–1.3Cu–0.5Mg Alloy,” Phys. Met Metallogr. 122, 614–620 (2021). CrossRef
16.
Zurück zum Zitat A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, O. A. Yakov-tseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017). CrossRef A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, O. A. Yakov-tseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017). CrossRef
17.
Zurück zum Zitat A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, Nos. 9–10, 537–542 (2017). CrossRef A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, Nos. 9–10, 537–542 (2017). CrossRef
18.
Zurück zum Zitat A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, Nos. 1–2, 79–86 (2019). CrossRef A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, Nos. 1–2, 79–86 (2019). CrossRef
19.
Zurück zum Zitat A. V. Pozdniakov, R. Yu. Barkov, A. S. Prosviryakov, A. Yu. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018). CrossRef A. V. Pozdniakov, R. Yu. Barkov, A. S. Prosviryakov, A. Yu. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018). CrossRef
20.
Zurück zum Zitat A. V. Pozdniakov and R. Yu. Barkov, “Microstructure and mechanical properties of novel Al–Y–Sc alloys with high thermal stability and electrical conductivity,” J. Mater. Sci. Technol. 36, 1–6 (2020). CrossRef A. V. Pozdniakov and R. Yu. Barkov, “Microstructure and mechanical properties of novel Al–Y–Sc alloys with high thermal stability and electrical conductivity,” J. Mater. Sci. Technol. 36, 1–6 (2020). CrossRef
21.
Zurück zum Zitat R. Yu. Barkov, O. A. Yakovtseva, O. I. Mamzurina, I. S. Loginova, S. V. Medvedeva, A. S. Proviryakov, A. V. Mikhailovskaya, and A. V. Pozdniakov, “Effect of Yb on the structure and properties of an electroconductive Al–Y–Sc alloy,” Phys. Met Metallogr. 121 (6), 604–609 (2020). CrossRef R. Yu. Barkov, O. A. Yakovtseva, O. I. Mamzurina, I. S. Loginova, S. V. Medvedeva, A. S. Proviryakov, A. V. Mikhailovskaya, and A. V. Pozdniakov, “Effect of Yb on the structure and properties of an electroconductive Al–Y–Sc alloy,” Phys. Met Metallogr. 121 (6), 604–609 (2020). CrossRef
22.
Zurück zum Zitat L. L. Rokhlin, T. V. Dobatkina, N. R. Bochvar, E. V. Lysova, and I. E. Tarytina, “Effect of yttrium and chromium on the recrystallization of Al–Sc alloys,” Russ. Metall. (Metally) 2007, 335–339 (2007). CrossRef L. L. Rokhlin, T. V. Dobatkina, N. R. Bochvar, E. V. Lysova, and I. E. Tarytina, “Effect of yttrium and chromium on the recrystallization of Al–Sc alloys,” Russ. Metall. (Metally) 2007, 335–339 (2007). CrossRef
23.
Zurück zum Zitat H. Gao, W. Feng, Y. Wang, J. Gu, Y. Zhang, J. Wang, and B. Sun, “Structural and compositional evolution of Al3(Zr,Y) precipitates in Al–Zr–Y alloy,” Mater. Charact. 121, 195–198 (2016). CrossRef H. Gao, W. Feng, Y. Wang, J. Gu, Y. Zhang, J. Wang, and B. Sun, “Structural and compositional evolution of Al3(Zr,Y) precipitates in Al–Zr–Y alloy,” Mater. Charact. 121, 195–198 (2016). CrossRef
24.
Zurück zum Zitat F. Cao, X. Zhu, S. Wang, L. Shi, G. Xu, and J. Wen, “Quasi-superplasticity of a banded-grained Al–Mg–Y alloy processed by continuous casting-extrusion,” Mater. Sci. Eng., A 690, 433–445 (2017). CrossRef F. Cao, X. Zhu, S. Wang, L. Shi, G. Xu, and J. Wen, “Quasi-superplasticity of a banded-grained Al–Mg–Y alloy processed by continuous casting-extrusion,” Mater. Sci. Eng., A 690, 433–445 (2017). CrossRef
25.
Zurück zum Zitat R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018). CrossRef R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018). CrossRef
26.
Zurück zum Zitat A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34 (12), 1489–1496 (2018). CrossRef A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34 (12), 1489–1496 (2018). CrossRef
27.
Zurück zum Zitat A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019). CrossRef A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019). CrossRef
28.
Zurück zum Zitat S. M. Amer, R. Y. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121 (5), 476–482 (2020). CrossRef S. M. Amer, R. Y. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121 (5), 476–482 (2020). CrossRef
29.
Zurück zum Zitat S. M. Amer, R. Y. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121 (10), 1002–1007 (2020). CrossRef S. M. Amer, R. Y. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121 (10), 1002–1007 (2020). CrossRef
30.
Zurück zum Zitat S. M. Amer, R. Y. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121 (12), 1227–1232 (2020). CrossRef S. M. Amer, R. Y. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121 (12), 1227–1232 (2020). CrossRef
31.
Zurück zum Zitat L. Min, W. Hongwei, W. Zunjie, and Z. Zhaojun, “The effect of Y on the hot-tearing resistance of Al–5 wt % Cu based alloy,” Mater. Des. 31, 2483–2487 (2010). CrossRef L. Min, W. Hongwei, W. Zunjie, and Z. Zhaojun, “The effect of Y on the hot-tearing resistance of Al–5 wt % Cu based alloy,” Mater. Des. 31, 2483–2487 (2010). CrossRef
32.
Zurück zum Zitat M. Guoling, L. Shanguang, W. Zhen, Z. Congcong, and G. Wenli, “The effects of Y on primary a-Al and precipitation of hypoeutectic Al–Si alloy,” Mater. Lett. 271, 127795 (2020). CrossRef M. Guoling, L. Shanguang, W. Zhen, Z. Congcong, and G. Wenli, “The effects of Y on primary a-Al and precipitation of hypoeutectic Al–Si alloy,” Mater. Lett. 271, 127795 (2020). CrossRef
33.
Zurück zum Zitat M. Guoling, Y. Han, Z. Congcong, W. Zhen, and G. Wenli, “The varied mechanisms of yttrium (Y) modifying a hypoeutectic AleSi alloy under conditions of different cooling rates,” J. Alloys Compd. 806, 909–916 (2019). CrossRef M. Guoling, Y. Han, Z. Congcong, W. Zhen, and G. Wenli, “The varied mechanisms of yttrium (Y) modifying a hypoeutectic AleSi alloy under conditions of different cooling rates,” J. Alloys Compd. 806, 909–916 (2019). CrossRef
34.
Zurück zum Zitat I. I. Novikov, Hot Brittleness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian]. I. I. Novikov, Hot Brittleness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian].
35.
Zurück zum Zitat D. G. Eskin, Suyitno, and L. Katgerman, “Mechanical properties in the semi-solid state and hot tearing of aluminium alloys,” Prog. Mater. Sci. 49, 629–711 (2004). CrossRef D. G. Eskin, Suyitno, and L. Katgerman, “Mechanical properties in the semi-solid state and hot tearing of aluminium alloys,” Prog. Mater. Sci. 49, 629–711 (2004). CrossRef
36.
Zurück zum Zitat V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27 (4), 193–198 (2014). CrossRef V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27 (4), 193–198 (2014). CrossRef
37.
Zurück zum Zitat V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113 (11), 1052–1060 (2012). CrossRef V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113 (11), 1052–1060 (2012). CrossRef
Metadaten
Titel
The Effect of Yittrium and Zirconium on the Structure and Properties of the Al–5Si–1.3Cu–0.5Mg Alloy
verfasst von
R. Yu. Barkov
M. G. Khomutov
M. V. Glavatskikh
A. V. Pozdniakov
Publikationsdatum
01.06.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 6/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22060023

Weitere Artikel der Ausgabe 6/2022

Physics of Metals and Metallography 6/2022 Zur Ausgabe