Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 6/2022

01.06.2022 | STRENGTH AND PLASTICITY

The Effects of Impurities on the Phase Composition and the Properties of the Al–Cu–Gd Alloy

verfasst von: M. V. Barkov, O. I. Mamzurina, M. V. Glavatskikh, R. Yu. Barkov, A. V. Pozdniakov

Erschienen in: Physics of Metals and Metallography | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The effect of impurities on the phase composition and the properties of a new quasibinary Al–Cu–Gd alloy have been investigated. The microstructure in the cast alloy consists of an aluminum solid solution, a dispersed eutectic with the Al8Cu4Gd phase with approximately 1% iron impurity dissolved, and an (AlGdCuSi) phase with an approximate composition of Al80Gd5Cu8Si5. High-temperature homogenization at 600°С results in the fragmentation and spheroidization of the solidification-induced phases, including the silicon-containing phase. The annealing of cold-worked sheets at temperatures up to 250°C results in roughly the same softening associated with the recovery and polygonization processes in alloys with and without impurities. The structure is completely recrystallized after 1-hour annealing at 300°C and has an average grain size of 7.5 μm, which slightly increases to 11 μm after annealing at 550°C. The yield strength of the alloys rolled and annealed at 100–150°С is 227–276 MPa with elongation of 5%. Iron and silicon impurities have no negative effects on the microstructure and mechanical properties of this new alloy.
Literatur
1.
Zurück zum Zitat V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, 2007). CrossRef V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, 2007). CrossRef
2.
Zurück zum Zitat ASM HANDBOOK. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (The Materials Information Company, 2010), Vol. 2. ASM HANDBOOK. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (The Materials Information Company, 2010), Vol. 2.
3.
Zurück zum Zitat N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum 519– 521, 395–400 (2006). CrossRef N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum 519521, 395–400 (2006). CrossRef
4.
Zurück zum Zitat N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007). CrossRef N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007). CrossRef
5.
Zurück zum Zitat A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34, 1489–1496 (2018). CrossRef A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34, 1489–1496 (2018). CrossRef
6.
Zurück zum Zitat S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasi-binary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 528–534 (2020). S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasi-binary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 528–534 (2020).
7.
Zurück zum Zitat A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019). CrossRef A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019). CrossRef
8.
Zurück zum Zitat S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121, 1227–1232 (2020). CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121, 1227–1232 (2020). CrossRef
9.
Zurück zum Zitat S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new heat-resistant cast alloys based on the Al–Cu–Y and Al–Cu–Er systems,” Phys. Met. Metallogr. 122, 908–914 (2021). CrossRef S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new heat-resistant cast alloys based on the Al–Cu–Y and Al–Cu–Er systems,” Phys. Met. Metallogr. 122, 908–914 (2021). CrossRef
10.
Zurück zum Zitat S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new wrought Al–Cu–Y and Al–Cu–Er based alloys,” Phys. Met. Metallogr. 122, 915–922 (2021). CrossRef S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new wrought Al–Cu–Y and Al–Cu–Er based alloys,” Phys. Met. Metallogr. 122, 915–922 (2021). CrossRef
11.
Zurück zum Zitat A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019). CrossRef A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019). CrossRef
12.
Zurück zum Zitat S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, 453–459 (2020). CrossRef S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, 453–459 (2020). CrossRef
13.
Zurück zum Zitat S. M. Amer, A. V. Mikhaylovskaya, R. Yu. Barkov, A. D. Kotov, A. G. Mochugovskiy, O. A. Yakovtseva, M. V. Glavatskikh, I. S. Loginova, S. V. Medvedeva, and A. V. Pozdniakov, “Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy,” JOM 73, 3092–3101 (2021). CrossRef S. M. Amer, A. V. Mikhaylovskaya, R. Yu. Barkov, A. D. Kotov, A. G. Mochugovskiy, O. A. Yakovtseva, M. V. Glavatskikh, I. S. Loginova, S. V. Medvedeva, and A. V. Pozdniakov, “Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy,” JOM 73, 3092–3101 (2021). CrossRef
14.
Zurück zum Zitat S. Amer, O. Yakovtseva, I. Loginova, S. Medvedeva, Al. Prosviryakov, A. Bazlov, R. Barkov, and A. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, 5345 (2020). CrossRef S. Amer, O. Yakovtseva, I. Loginova, S. Medvedeva, Al. Prosviryakov, A. Bazlov, R. Barkov, and A. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, 5345 (2020). CrossRef
15.
Zurück zum Zitat S. Amer, R. Barkov, and A. Pozdniakov, “Microstructure and mechanical properties of novel quasibinary Al–Cu–Yb and Al–Cu–Gd alloys,” Metals 11, 476 (2021). CrossRef S. Amer, R. Barkov, and A. Pozdniakov, “Microstructure and mechanical properties of novel quasibinary Al–Cu–Yb and Al–Cu–Gd alloys,” Metals 11, 476 (2021). CrossRef
16.
Zurück zum Zitat S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121, 1002–1007 (2020). CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121, 1002–1007 (2020). CrossRef
17.
Zurück zum Zitat S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy,” Phys. Met. Metallogr. 121, 495–499 (2020). CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy,” Phys. Met. Metallogr. 121, 495–499 (2020). CrossRef
18.
Zurück zum Zitat N. Q. Vo, D. C. Dunand, and D. N. Seidman, “Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er,” Acta Mater. 63, 73–85 (2014). CrossRef N. Q. Vo, D. C. Dunand, and D. N. Seidman, “Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er,” Acta Mater. 63, 73–85 (2014). CrossRef
19.
Zurück zum Zitat A. De Luca, D. C. Dunand, and D. N. Seidman, “Mechanical properties and optimization of the aging of a dilute Al–Sc–Er–Zr–Si alloy with a high Zr/Sc ratio,” Acta Mater. 119, 35–42 (2016). CrossRef A. De Luca, D. C. Dunand, and D. N. Seidman, “Mechanical properties and optimization of the aging of a dilute Al–Sc–Er–Zr–Si alloy with a high Zr/Sc ratio,” Acta Mater. 119, 35–42 (2016). CrossRef
20.
Zurück zum Zitat C. Booth-Morrison, D. N. Seidman, and D. C. Dunand, “Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys,” Acta Mater. 60, 3643–3654 (2012). CrossRef C. Booth-Morrison, D. N. Seidman, and D. C. Dunand, “Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys,” Acta Mater. 60, 3643–3654 (2012). CrossRef
21.
Zurück zum Zitat A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” Phys. Met. Metallogr. 118, 479–484 (2017). CrossRef A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” Phys. Met. Metallogr. 118, 479–484 (2017). CrossRef
22.
Zurück zum Zitat A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, 79–86 (2019). CrossRef A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, 79–86 (2019). CrossRef
23.
Zurück zum Zitat R. A. Karnesky, M. E. van Dalen, D. C. Dunand, and D. N. Seidman, “Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08 at % Sc alloy,” Scr. Mater. 55, 437–440 (2006). CrossRef R. A. Karnesky, M. E. van Dalen, D. C. Dunand, and D. N. Seidman, “Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08 at % Sc alloy,” Scr. Mater. 55, 437–440 (2006). CrossRef
24.
Zurück zum Zitat M. E. Van Dalen, D. C. Dunand, and D. N. Seidman, “Nanoscale precipitation and mechanical properties of Al–0.06 at % Sc alloys microalloyed with Yb or Gd,” J. Mater. Sci. 41, 7814–7823 (2006). CrossRef M. E. Van Dalen, D. C. Dunand, and D. N. Seidman, “Nanoscale precipitation and mechanical properties of Al–0.06 at % Sc alloys microalloyed with Yb or Gd,” J. Mater. Sci. 41, 7814–7823 (2006). CrossRef
25.
Zurück zum Zitat M. E. Van Dalen, D. C. Dunand, and D. N. Seidman, “Microstructural evolution and creep properties of precipitation-strengthened Al–0.06Sc–0.02Gd and Al–0.06Sc–0.02Yb (at %) alloys,” Acta Mater. 59, 5224–5237 (2011). CrossRef M. E. Van Dalen, D. C. Dunand, and D. N. Seidman, “Microstructural evolution and creep properties of precipitation-strengthened Al–0.06Sc–0.02Gd and Al–0.06Sc–0.02Yb (at %) alloys,” Acta Mater. 59, 5224–5237 (2011). CrossRef
26.
Zurück zum Zitat G. Cacciamani, S. De Negri, A. Saccone, and R. Ferro, “The Al–R–Mg (R = Gd, Dy, Ho) systems. Part I: experimental investigation,” Intermetallics 11, 1125–113 (2003). CrossRef G. Cacciamani, S. De Negri, A. Saccone, and R. Ferro, “The Al–R–Mg (R = Gd, Dy, Ho) systems. Part I: experimental investigation,” Intermetallics 11, 1125–113 (2003). CrossRef
Metadaten
Titel
The Effects of Impurities on the Phase Composition and the Properties of the Al–Cu–Gd Alloy
verfasst von
M. V. Barkov
O. I. Mamzurina
M. V. Glavatskikh
R. Yu. Barkov
A. V. Pozdniakov
Publikationsdatum
01.06.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 6/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22060035

Weitere Artikel der Ausgabe 6/2022

Physics of Metals and Metallography 6/2022 Zur Ausgabe