Skip to main content
Erschienen in: Electrical Engineering 6/2022

09.08.2022 | Original Paper

The effects of non-standard lightning impulse on electrical insulation: a review

verfasst von: Pradipta Ghosh, Arup Kumar Das, Sovan Dalai, Saibal Chatterjee

Erschienen in: Electrical Engineering | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Equipment installed in a power system network has to tolerate impulse overvoltage throughout its life span. Lightning impulses are one of the primary reasons of this overvoltage. Hence, insulation of the power equipment is designed and tested with standard lightning impulse. However, in reality, various complex, oscillatory non-standard lightning impulse waveforms exist in natural lightning impulses. Therefore, for the better design of insulation of the power equipment, identification of the non-standard lightning impulse waveform is essential. This article presents a comprehensive review of the effects of non-standard lightning impulse voltage on the insulation of power equipment. This article will help to classify the non-standard lightning impulse waveforms and identify the parameters, generation circuit, and analysis of non-standard lightning impulse waveforms till the present day. Hence, the information presented in the article can be helpful for the insulation design of the power equipment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jana S, Biswas P K, Das U (2018) Numerical computational analysis of lightning energy storage system using single stage two level impulse generator. In: 2nd international conference on power, energy and environment: towards smart technology (ICEPE) (2018): 1–6 Jana S, Biswas P K, Das U (2018) Numerical computational analysis of lightning energy storage system using single stage two level impulse generator. In: 2nd international conference on power, energy and environment: towards smart technology (ICEPE) (2018): 1–6
3.
Zurück zum Zitat High Voltage Test Techniques Part 1: General Definitions and Test Requirements, Standard IS 2071–1, Indian Standard (2004) High Voltage Test Techniques Part 1: General Definitions and Test Requirements, Standard IS 2071–1, Indian Standard (2004)
4.
Zurück zum Zitat High-voltage Test Techniques-Part 1: General Definitions and Test Requirements, Standard IEC 60060–1, International Electrotechnical Commission (2010) High-voltage Test Techniques-Part 1: General Definitions and Test Requirements, Standard IEC 60060–1, International Electrotechnical Commission (2010)
5.
Zurück zum Zitat High-Voltage Test Techniques: IEC Publication 60 (1962) High-Voltage Test Techniques: IEC Publication 60 (1962)
6.
Zurück zum Zitat Venkatesan S, Usa S, Kumar KU (2002) Unconditionally sequential approach to calculate the impulse voltages strength of air for non-standard impulse voltages. In: Proceedings IEEE/PES Asia Pacific transmission and distribution conference and exhibition. 2: 1236–1240 Venkatesan S, Usa S, Kumar KU (2002) Unconditionally sequential approach to calculate the impulse voltages strength of air for non-standard impulse voltages. In: Proceedings IEEE/PES Asia Pacific transmission and distribution conference and exhibition. 2: 1236–1240
7.
Zurück zum Zitat Okabe S, Yuasa S, Kaneko S (2007) Evaluation of breakdown characteristics of gas-insulated switchgear for non-standard lightning impulse waveforms -analysis and generation circuit of non-standard lightning impulse waveforms in actual field. IEEE Trans Dielectr Electr Insul 14(2):312–320 Okabe S, Yuasa S, Kaneko S (2007) Evaluation of breakdown characteristics of gas-insulated switchgear for non-standard lightning impulse waveforms -analysis and generation circuit of non-standard lightning impulse waveforms in actual field. IEEE Trans Dielectr Electr Insul 14(2):312–320
8.
Zurück zum Zitat Ueta G, Wada J, Okabe S (2011) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms - method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms-. IEEE Trans Dielectr Electr Insul 18(5):1724–1733 Ueta G, Wada J, Okabe S (2011) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms - method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms-. IEEE Trans Dielectr Electr Insul 18(5):1724–1733
9.
Zurück zum Zitat Wada J, Ueta G, Okabe S (2013) Evaluation of breakdown characteristics of N2 gas for non-standard lightning impulse waveforms - method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms-. IEEE Trans Dielectr Electr Insul 20(2):505–514 Wada J, Ueta G, Okabe S (2013) Evaluation of breakdown characteristics of N2 gas for non-standard lightning impulse waveforms - method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms-. IEEE Trans Dielectr Electr Insul 20(2):505–514
10.
Zurück zum Zitat Faria GH et al (2020) Lightning withstand of medium voltage switches and cut-out fuses considering standard and non-standard impulse shapes. IEEE Electr Insul Mag 36(4):47–55 Faria GH et al (2020) Lightning withstand of medium voltage switches and cut-out fuses considering standard and non-standard impulse shapes. IEEE Electr Insul Mag 36(4):47–55
11.
Zurück zum Zitat Okabe S, Takami J (2008) Evaluation of breakdown characteristics of oil-immersed transformers under non-standard lightning impulse waveforms - method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms. IEEE Trans Dielectr Electr Insul 15(5):1288–1296 Okabe S, Takami J (2008) Evaluation of breakdown characteristics of oil-immersed transformers under non-standard lightning impulse waveforms - method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms. IEEE Trans Dielectr Electr Insul 15(5):1288–1296
12.
Zurück zum Zitat Bhuyan K, Chatterjee S (2010) Study of effects of standard and non-standard impulse waves on power transformer. In: Proc Power Electr Drives and Energy Syst Int Conf (2010): 1–4 Bhuyan K, Chatterjee S (2010) Study of effects of standard and non-standard impulse waves on power transformer. In: Proc Power Electr Drives and Energy Syst Int Conf (2010): 1–4
13.
Zurück zum Zitat Bhuyan K, Chatterjee S (2015) Electric stresses on transformer winding insulation under standard and non-standard impulse voltages. Electric Power Sys Res 123:40–47 Bhuyan K, Chatterjee S (2015) Electric stresses on transformer winding insulation under standard and non-standard impulse voltages. Electric Power Sys Res 123:40–47
14.
Zurück zum Zitat AIEE Committee Report (1934) Flashover voltages of insulators and gaps. Elect Eng 53(6):882–886 AIEE Committee Report (1934) Flashover voltages of insulators and gaps. Elect Eng 53(6):882–886
15.
Zurück zum Zitat Carrus A, Funes LE (1984) Very short-tailed lightning double exponential wave generation techniques based on Marx circuit standard configurations. IEEE Trans. Power App Syst PAS- 103(4):782–787 Carrus A, Funes LE (1984) Very short-tailed lightning double exponential wave generation techniques based on Marx circuit standard configurations. IEEE Trans. Power App Syst PAS- 103(4):782–787
16.
Zurück zum Zitat Burrage LM, Veverka EF, McConnell BW (1987) Steep front short duration low voltage impulse performance of distribution transformers. IEEE Trans Power Del PWRD 2(4):1152–1156 Burrage LM, Veverka EF, McConnell BW (1987) Steep front short duration low voltage impulse performance of distribution transformers. IEEE Trans Power Del PWRD 2(4):1152–1156
17.
Zurück zum Zitat Carrus A (1989) An inductance on the Marx generator tail branch. New technique for high efficiency laboratory reproduction of short time to Half value lightning impulses. IEEE Trans Power Del 4(1):90–94 Carrus A (1989) An inductance on the Marx generator tail branch. New technique for high efficiency laboratory reproduction of short time to Half value lightning impulses. IEEE Trans Power Del 4(1):90–94
18.
Zurück zum Zitat Lux E, Miller DB, Kempkes DL (1989) The effect of steep-front short-duration pulses on polyethylene cable insulation. In: Proc IEEE Eng Info Tech in the Southeast 1989. vol 3, pp 1372–1376 Lux E, Miller DB, Kempkes DL (1989) The effect of steep-front short-duration pulses on polyethylene cable insulation. In: Proc IEEE Eng Info Tech in the Southeast 1989. vol 3, pp 1372–1376
19.
Zurück zum Zitat Shaw JH (1989) Instrumentation system used to determine the effects of steep front short duration impulses on electric power system Insulation. IEEE Trans Power Del 4(2):938–941 Shaw JH (1989) Instrumentation system used to determine the effects of steep front short duration impulses on electric power system Insulation. IEEE Trans Power Del 4(2):938–941
20.
Zurück zum Zitat Aoshima Y, Miyake K (1989) Flashover characteristics of air gaps for short tail waves (Japanese). The Trans Ins Elect Eng Japan B 109(3):135–142 Aoshima Y, Miyake K (1989) Flashover characteristics of air gaps for short tail waves (Japanese). The Trans Ins Elect Eng Japan B 109(3):135–142
21.
Zurück zum Zitat Miller DB, Lux AE, Barnes PR (1990) The effects of steep-front, short-duration impulses on power distribution components. IEEE Trans Power Del 5(2):708–714 Miller DB, Lux AE, Barnes PR (1990) The effects of steep-front, short-duration impulses on power distribution components. IEEE Trans Power Del 5(2):708–714
22.
Zurück zum Zitat Grzybowski S, Jacob PB (1990) The steep-front, short-duration pulse characteristics of distribution insulators with wood. IEEE Trans Power Del 5(3):1608–1616 Grzybowski S, Jacob PB (1990) The steep-front, short-duration pulse characteristics of distribution insulators with wood. IEEE Trans Power Del 5(3):1608–1616
23.
Zurück zum Zitat Motoyama H (1996) Experimental study and analysis of breakdown characteristics of long air gaps with short tail lightning impulse. IEEE Trans Power Del 11(2):972–979 Motoyama H (1996) Experimental study and analysis of breakdown characteristics of long air gaps with short tail lightning impulse. IEEE Trans Power Del 11(2):972–979
24.
Zurück zum Zitat Carrus A et al (1999) Short tail lightning impulse behaviour of medium voltage line insulation. IEEE Trans Power Del 14(1):218–226 Carrus A et al (1999) Short tail lightning impulse behaviour of medium voltage line insulation. IEEE Trans Power Del 14(1):218–226
25.
Zurück zum Zitat Venkatesan S, Ranjan PV, Ashokaraju D (2003) A comparative study on methods for evaluation of lightning impulse parameters. In: Proc Asia-Pacific Region Convergent Tech Conf (TENCON 2003), 2003. vol 4, pp 1562–1566 Venkatesan S, Ranjan PV, Ashokaraju D (2003) A comparative study on methods for evaluation of lightning impulse parameters. In: Proc Asia-Pacific Region Convergent Tech Conf (TENCON 2003), 2003. vol 4, pp 1562–1566
26.
Zurück zum Zitat Grzybowski S, Song Y, Kappenman J (2004) CFO voltage and V-t characteristic of 15 kV polymer suspension insulator under lightning and Steep front short duration impulses. In: Proc IEEE Int Symp Elect Insul Conf. pp 308–311 Grzybowski S, Song Y, Kappenman J (2004) CFO voltage and V-t characteristic of 15 kV polymer suspension insulator under lightning and Steep front short duration impulses. In: Proc IEEE Int Symp Elect Insul Conf. pp 308–311
27.
Zurück zum Zitat Grzybowski S, Song S, Kappenman J (2004) Study on the electrical strength of distribution insulators under steep front, short-duration pulse. In: Proc Electr Insul Dielectr Phenomena Conf 2004. pp 643–646 Grzybowski S, Song S, Kappenman J (2004) Study on the electrical strength of distribution insulators under steep front, short-duration pulse. In: Proc Electr Insul Dielectr Phenomena Conf 2004. pp 643–646
28.
Zurück zum Zitat Ancajima A et al (2007) Breakdown characteristics of air spark-gaps stressed by standard and short-tail lightning impulses: experimental results and comparison with time to sparkover models. J Electrostatics 65(5–6):282–288 Ancajima A et al (2007) Breakdown characteristics of air spark-gaps stressed by standard and short-tail lightning impulses: experimental results and comparison with time to sparkover models. J Electrostatics 65(5–6):282–288
29.
Zurück zum Zitat Braz CP et al (2014) Analysis of different procedures for the application of the disruptive effect model to distribution insulators Subject to short tail lightning impulses. Electr Power Syst Res 113:165–170 Braz CP et al (2014) Analysis of different procedures for the application of the disruptive effect model to distribution insulators Subject to short tail lightning impulses. Electr Power Syst Res 113:165–170
30.
Zurück zum Zitat Ancajima A et al (2010) Behavior of MV insulators under lightning-induced overvoltages: experimental results and reproduction of volt-time characteristics by disruptive effect models. IEEE Trans Power Del 25(1):221–230 Ancajima A et al (2010) Behavior of MV insulators under lightning-induced overvoltages: experimental results and reproduction of volt-time characteristics by disruptive effect models. IEEE Trans Power Del 25(1):221–230
31.
Zurück zum Zitat Lantharthong T et al (2014) Effect of waveform and impulse resistance on lightning performance in distribution system. In: Proc IEEE Int Conf Lightning Protection (ICLP). pp 1766–1769 Lantharthong T et al (2014) Effect of waveform and impulse resistance on lightning performance in distribution system. In: Proc IEEE Int Conf Lightning Protection (ICLP). pp 1766–1769
32.
Zurück zum Zitat Wang X, Yu Z, He J (2014) Breakdown process experiments of 110- to 500-kV insulator strings under short tail lightning impulse. IEEE Trans Power Del 29(5):2394–2401 Wang X, Yu Z, He J (2014) Breakdown process experiments of 110- to 500-kV insulator strings under short tail lightning impulse. IEEE Trans Power Del 29(5):2394–2401
33.
Zurück zum Zitat Yuan Z et al (2014) Experimental study and analysis of insulator breakdown characteristics with short-tail lightning impulse. J Int Council on Elect Eng 4(3):199–203 Yuan Z et al (2014) Experimental study and analysis of insulator breakdown characteristics with short-tail lightning impulse. J Int Council on Elect Eng 4(3):199–203
34.
Zurück zum Zitat Sima W et al (2016) Impact of time parameters of lightning impulse on the breakdown characteristics of oil-paper insulation. High Volt 1(1):18–24 Sima W et al (2016) Impact of time parameters of lightning impulse on the breakdown characteristics of oil-paper insulation. High Volt 1(1):18–24
35.
Zurück zum Zitat Yamamoto K, Masuda K, Sumi S (2018) Long-wave-tail current Generator to generate real winter lightning current. In: Proceedings of 34th international conference on lightning protection (ICLP). pp 1–5 Yamamoto K, Masuda K, Sumi S (2018) Long-wave-tail current Generator to generate real winter lightning current. In: Proceedings of 34th international conference on lightning protection (ICLP). pp 1–5
36.
Zurück zum Zitat Xiao P et al (2018) Experimental study on the flashover characteristics of polluted insulators under short-tail lightning impulse waveform. In: Proc IEEE Int Conf High Volt Eng App (ICHVE). pp 1–4 Xiao P et al (2018) Experimental study on the flashover characteristics of polluted insulators under short-tail lightning impulse waveform. In: Proc IEEE Int Conf High Volt Eng App (ICHVE). pp 1–4
37.
Zurück zum Zitat Zhao X et al (2018) Breakdown characteristics of a 220-kV composite insulator string under short tail lightning impulses based on the discharge current and images. IEEE Trans Power Del 33(6):3211–3217 Zhao X et al (2018) Breakdown characteristics of a 220-kV composite insulator string under short tail lightning impulses based on the discharge current and images. IEEE Trans Power Del 33(6):3211–3217
38.
Zurück zum Zitat Han Y et al (2018) Study on influencing factors of insulators flashover characteristics on the 110 kV true tower under the lightning impulse. IEEE Access 6:66536–66544 Han Y et al (2018) Study on influencing factors of insulators flashover characteristics on the 110 kV true tower under the lightning impulse. IEEE Access 6:66536–66544
39.
Zurück zum Zitat Okabe S et al (2009) Evaluation of breakdown characteristics of gas-insulated switchgear for non-standard lightning impulse waveforms -method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms-. IEEE Trans Dielectr Electr Insul 16(1):42–51 Okabe S et al (2009) Evaluation of breakdown characteristics of gas-insulated switchgear for non-standard lightning impulse waveforms -method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms-. IEEE Trans Dielectr Electr Insul 16(1):42–51
40.
Zurück zum Zitat Koto M et al (1998) Insulation characteristics of GIS for non-standard lightning surge waveforms. In: Proc 8th Int Sym Gaseous Dielectr (1998). pp 547–553 Koto M et al (1998) Insulation characteristics of GIS for non-standard lightning surge waveforms. In: Proc 8th Int Sym Gaseous Dielectr (1998). pp 547–553
41.
Zurück zum Zitat Okabe S et al (1999) Insulation characteristics of GIS for non-standard lightning surge waveforms < No-2: gas gaps and spacer surface >. In: Proc Eng Symp High Volt (1999). vol 3, pp 163–166 Okabe S et al (1999) Insulation characteristics of GIS for non-standard lightning surge waveforms < No-2: gas gaps and spacer surface >. In: Proc Eng Symp High Volt (1999). vol 3, pp 163–166
42.
Zurück zum Zitat Okabe S et al (2003) Analysis of non-standard lightning impulse voltage for actual substation and generation circuit (Japanese). IEEJ Trans Power Energy 123(2):175–180 Okabe S et al (2003) Analysis of non-standard lightning impulse voltage for actual substation and generation circuit (Japanese). IEEJ Trans Power Energy 123(2):175–180
43.
Zurück zum Zitat Wada J, Ueta G, Okabe S (2012) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse WAVEFORMS - breakdown characteristics under double-frequency oscillation waveforms and single-frequency oscillation waveforms in the presence of bias voltage. IEEE Trans Dielectr Electr Insul 19(5):1799–1809 Wada J, Ueta G, Okabe S (2012) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse WAVEFORMS - breakdown characteristics under double-frequency oscillation waveforms and single-frequency oscillation waveforms in the presence of bias voltage. IEEE Trans Dielectr Electr Insul 19(5):1799–1809
44.
Zurück zum Zitat Ueta G, Wada J, Okabe S (2011) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms - breakdown characteristics under single-frequency oscillation waveforms of 5.3 MHz to 20.0 MHz. IEEE Trans Dielectr Electr Insul 18(1):238–245 Ueta G, Wada J, Okabe S (2011) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms - breakdown characteristics under single-frequency oscillation waveforms of 5.3 MHz to 20.0 MHz. IEEE Trans Dielectr Electr Insul 18(1):238–245
45.
Zurück zum Zitat Wada J, Ueta G, Okabe S (2011) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms under non-uniform electric field - breakdown characteristics for Single-frequency oscillation waveforms. IEEE Trans Dielectr Electr Insul 18(2):640–648 Wada J, Ueta G, Okabe S (2011) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms under non-uniform electric field - breakdown characteristics for Single-frequency oscillation waveforms. IEEE Trans Dielectr Electr Insul 18(2):640–648
46.
Zurück zum Zitat Wada J, Ueta G, Okabe S (2011) Evaluation of breakdown characteristics of N2 gas for non-standard lightning impulse waveforms - breakdown characteristics under single-frequency oscillation waveforms and with bias voltages. IEEE Trans Dielectr Electr Insul 18(5):1759–1766 Wada J, Ueta G, Okabe S (2011) Evaluation of breakdown characteristics of N2 gas for non-standard lightning impulse waveforms - breakdown characteristics under single-frequency oscillation waveforms and with bias voltages. IEEE Trans Dielectr Electr Insul 18(5):1759–1766
47.
Zurück zum Zitat Wada J, Ueta G, Okabe S (2013) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms - breakdown characteristics in the presence of bias voltages under non-uniform electric field. IEEE Trans Dielectr Electr Insul 20(1):112–121 Wada J, Ueta G, Okabe S (2013) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms - breakdown characteristics in the presence of bias voltages under non-uniform electric field. IEEE Trans Dielectr Electr Insul 20(1):112–121
48.
Zurück zum Zitat Wada J et al (2014) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms -breakdown characteristics for double-frequency oscillation waveforms under non-uniform electric field. IEEE Trans Dielectr Electr Insul 21(2):617–626 Wada J et al (2014) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms -breakdown characteristics for double-frequency oscillation waveforms under non-uniform electric field. IEEE Trans Dielectr Electr Insul 21(2):617–626
49.
Zurück zum Zitat Okabe S et al (2001) Insulation characteristics of GIS under non-standard lightning impulse oscillations - insulation characteristics under high frequency oscillations- (Japanese). T IEE Japan 121-B(11):1587–1593 Okabe S et al (2001) Insulation characteristics of GIS under non-standard lightning impulse oscillations - insulation characteristics under high frequency oscillations- (Japanese). T IEE Japan 121-B(11):1587–1593
50.
Zurück zum Zitat Yokoi T, Kaneko S, Okabe S (2006) Insulation characteristics of CO2 gas for non-standard lightning impulse oscillations - insulation characteristics under single-frequency oscillations from 5.3 to 20 MHz- (Japanese). T IEE Japan 126(5):539–544 Yokoi T, Kaneko S, Okabe S (2006) Insulation characteristics of CO2 gas for non-standard lightning impulse oscillations - insulation characteristics under single-frequency oscillations from 5.3 to 20 MHz- (Japanese). T IEE Japan 126(5):539–544
51.
Zurück zum Zitat Kaneko S, Yokoi T, Okabe S (2006) Insulation characteristics of CO2 gas for non-standard lightning impulse oscillations - insulation characteristics under single-frequency oscillations from 1.3 to 4.0 MHz- (Japanese). IEEJ Trans PE 126(1):91–96 Kaneko S, Yokoi T, Okabe S (2006) Insulation characteristics of CO2 gas for non-standard lightning impulse oscillations - insulation characteristics under single-frequency oscillations from 1.3 to 4.0 MHz- (Japanese). IEEJ Trans PE 126(1):91–96
52.
Zurück zum Zitat Kaneko S, Okabe S (2007) Insulation characteristics and its evaluation of N2 gas for non-standard lightning impulse waveforms (Japanese). IEEJ Trans PE 127(7):854–862 Kaneko S, Okabe S (2007) Insulation characteristics and its evaluation of N2 gas for non-standard lightning impulse waveforms (Japanese). IEEJ Trans PE 127(7):854–862
53.
Zurück zum Zitat Okabe S, Yuasa S, Kaneko S (2008) Evaluation of breakdown characteristics of gas-insulated switchgear for non-standard lightning impulse waveforms - breakdown characteristics for non-standard lightning impulse waveforms associated with disconnector switching surges-. IEEE Trans Dielectr Electr Insul 15(3):721–729 Okabe S, Yuasa S, Kaneko S (2008) Evaluation of breakdown characteristics of gas-insulated switchgear for non-standard lightning impulse waveforms - breakdown characteristics for non-standard lightning impulse waveforms associated with disconnector switching surges-. IEEE Trans Dielectr Electr Insul 15(3):721–729
54.
Zurück zum Zitat Wada J, Ueta G, Okabe S (2013) Evaluation of breakdown characteristics of N2 gas for non-standard lightning impulse waveforms - breakdown characteristics under double-frequency oscillation waveforms and pressure-distance characteristics. IEEE Trans Dielectr Electr Insul 19(5):1810–1818 Wada J, Ueta G, Okabe S (2013) Evaluation of breakdown characteristics of N2 gas for non-standard lightning impulse waveforms - breakdown characteristics under double-frequency oscillation waveforms and pressure-distance characteristics. IEEE Trans Dielectr Electr Insul 19(5):1810–1818
55.
Zurück zum Zitat Jones AR (1954) Evaluation of the integration method for analysis of non-standard surge voltages. AIEE Trans 73:984–990 Jones AR (1954) Evaluation of the integration method for analysis of non-standard surge voltages. AIEE Trans 73:984–990
56.
Zurück zum Zitat Shindo T, Suzuki T (1985) A new calculation method of breakdown voltage-time characteristics of long air gaps. IEEE Trans Power App Syst PAS- 104(6):1556–1563 Shindo T, Suzuki T (1985) A new calculation method of breakdown voltage-time characteristics of long air gaps. IEEE Trans Power App Syst PAS- 104(6):1556–1563
57.
Zurück zum Zitat Li Z, Kuffel R, Kuffel E (1986) Volt-time characteristics in air, SF6/AIR mixture and N2 for coaxial cylinder and rod-sphere gaps. IEEE Trans Elect Insul EI- 21(2):151–155 Li Z, Kuffel R, Kuffel E (1986) Volt-time characteristics in air, SF6/AIR mixture and N2 for coaxial cylinder and rod-sphere gaps. IEEE Trans Elect Insul EI- 21(2):151–155
58.
Zurück zum Zitat Darveniza M, Vlastos AE (1988) Generalised breakdown models and the integration method for predicting non-standard waveshape impulse strengths. In: Proc of Prop and Appl of Dielectr Mater Sec Int Conf (1988). vol 1, pp 284–287 Darveniza M, Vlastos AE (1988) Generalised breakdown models and the integration method for predicting non-standard waveshape impulse strengths. In: Proc of Prop and Appl of Dielectr Mater Sec Int Conf (1988). vol 1, pp 284–287
59.
Zurück zum Zitat Darveniza M, Vlastos AE (1988) The generalized integration method for predicting impulse volt-time characteristics for non-standard wave shapes - a theoretical basis. IEEE Trans Electr Insul 23(3):373–381 Darveniza M, Vlastos AE (1988) The generalized integration method for predicting impulse volt-time characteristics for non-standard wave shapes - a theoretical basis. IEEE Trans Electr Insul 23(3):373–381
60.
Zurück zum Zitat Pigini A et al (1989) Performance of large air gaps under lightning overvoltages: experimental study and analysis of accuracy predetermination methods. IEEE Trans Power Del 4(2):1379–1392 Pigini A et al (1989) Performance of large air gaps under lightning overvoltages: experimental study and analysis of accuracy predetermination methods. IEEE Trans Power Del 4(2):1379–1392
61.
Zurück zum Zitat Task Force 15.09 on Non-standard Lightning Voltage Waves, Lightning and Insulator Subcommittee of the T & D Committee (1994) Review of research on non-standard lightning voltage waves. IEEE Trans Power Del 9(4):1972–1981 Task Force 15.09 on Non-standard Lightning Voltage Waves, Lightning and Insulator Subcommittee of the T & D Committee (1994) Review of research on non-standard lightning voltage waves. IEEE Trans Power Del 9(4):1972–1981
62.
Zurück zum Zitat Chowdhuri P et al (1994) The effects of non-standard lightning voltage waveshapes on the impulse strength of short air gaps. IEEE Trans Power Del 9(4):1991–1999 Chowdhuri P et al (1994) The effects of non-standard lightning voltage waveshapes on the impulse strength of short air gaps. IEEE Trans Power Del 9(4):1991–1999
63.
Zurück zum Zitat Chowdhuri P, Mishra AK, McConnell BW (1997) Volt-time characteristics of short air gaps under non-standard lightning voltage waves. IEEE Trans Power Del 12(1):470–476 Chowdhuri P, Mishra AK, McConnell BW (1997) Volt-time characteristics of short air gaps under non-standard lightning voltage waves. IEEE Trans Power Del 12(1):470–476
64.
Zurück zum Zitat Zhang XQ (2006) Study on corona characteristics under non-standard lightning impulses. Electr Eng 89:519–524 Zhang XQ (2006) Study on corona characteristics under non-standard lightning impulses. Electr Eng 89:519–524
65.
Zurück zum Zitat Ancajima A et al (2007) Optimal selection of disruptive effect models parameters for the reproduction of mv insulators volt-time characteristics under standard and non-standard lightning impulses. IEEE Lausanne Power Tech 760–765 Ancajima A et al (2007) Optimal selection of disruptive effect models parameters for the reproduction of mv insulators volt-time characteristics under standard and non-standard lightning impulses. IEEE Lausanne Power Tech 760–765
66.
Zurück zum Zitat Aniserowicz K, Zielenkiewicz M (2007) Non-standard Lightning Protection Devices-A Criticism. In: Proc Int Conf Electr Contr Tech: 177–180. Aniserowicz K, Zielenkiewicz M (2007) Non-standard Lightning Protection Devices-A Criticism. In: Proc Int Conf Electr Contr Tech: 177–180.
67.
Zurück zum Zitat Bhuyan K, Chatterjee S (2008) Study of effect of standard and non-standard impulse waves on power equipments. In: Proc NCEEERE (2008). pp 1–6 Bhuyan K, Chatterjee S (2008) Study of effect of standard and non-standard impulse waves on power equipments. In: Proc NCEEERE (2008). pp 1–6
68.
Zurück zum Zitat Yuvarajan M et al (2008) Behavior of LN2/ Paper composite insulating material under AC, standard and non-standard lightning impulse voltage. In: Proc Electr Insul Dielectr Phenomena Conf (2008). pp 641–644 Yuvarajan M et al (2008) Behavior of LN2/ Paper composite insulating material under AC, standard and non-standard lightning impulse voltage. In: Proc Electr Insul Dielectr Phenomena Conf (2008). pp 641–644
69.
Zurück zum Zitat Kadir MZAA, Ahmad MH, Jasni J (2008) Effect of the non-standard lightning current and waveshape on lightning surge analysis. Asian J Appl Sci 1(2):168–176 Kadir MZAA, Ahmad MH, Jasni J (2008) Effect of the non-standard lightning current and waveshape on lightning surge analysis. Asian J Appl Sci 1(2):168–176
70.
Zurück zum Zitat Venkatesan S, Usa S (2010) Volt–time characteristics of small airgaps with hyperbolic model. Electr Power Syst Res 80(7):739–742 Venkatesan S, Usa S (2010) Volt–time characteristics of small airgaps with hyperbolic model. Electr Power Syst Res 80(7):739–742
71.
Zurück zum Zitat Braz P, Piantini A (2011) Analysis of the dielectric behavior of distribution insulators under non-standard lightning impulses voltages (Portuguese). IEEE Lat Am Trans 9(5):732–739 Braz P, Piantini A (2011) Analysis of the dielectric behavior of distribution insulators under non-standard lightning impulses voltages (Portuguese). IEEE Lat Am Trans 9(5):732–739
72.
Zurück zum Zitat Braz P et al (2012) Analysis of the disruptive effect model for the prediction of the breakdown characteristics of distribution insulators under non-standard lightning impulses. In: Proc Lightning Protection Int Conf (2012). pp 1–7 Braz P et al (2012) Analysis of the disruptive effect model for the prediction of the breakdown characteristics of distribution insulators under non-standard lightning impulses. In: Proc Lightning Protection Int Conf (2012). pp 1–7
73.
Zurück zum Zitat Lopes G P, Pedroso J A D, Martinez M L B (2013) Evaluation of CFO for medium voltage insulators submitted to non-standard impulse shapes experimental results. In: Proc IEEE Electr Insul Conf (EIC) (2013). pp 419–423 Lopes G P, Pedroso J A D, Martinez M L B (2013) Evaluation of CFO for medium voltage insulators submitted to non-standard impulse shapes experimental results. In: Proc IEEE Electr Insul Conf (EIC) (2013). pp 419–423
74.
Zurück zum Zitat Metwally IA (2013) Performance improvement of slow-wave rogowski coils for high impulse current measurement. IEEE Sens J 13(2):538–547 Metwally IA (2013) Performance improvement of slow-wave rogowski coils for high impulse current measurement. IEEE Sens J 13(2):538–547
75.
Zurück zum Zitat Bhuyan K, Chatterjee S (2015) Simulation of overvoltage stresses on surge arrester insulation. Int Trans Electr Energy Syst 26(6):1210–1225 Bhuyan K, Chatterjee S (2015) Simulation of overvoltage stresses on surge arrester insulation. Int Trans Electr Energy Syst 26(6):1210–1225
76.
Zurück zum Zitat Krithika G, Usa S (2015) v-t Characteristics using extended disruptive effect model for impulses of varying front times. IEEE Trans Dielectr Electr Insul 22(4):2191–2195 Krithika G, Usa S (2015) v-t Characteristics using extended disruptive effect model for impulses of varying front times. IEEE Trans Dielectr Electr Insul 22(4):2191–2195
77.
Zurück zum Zitat Shigihara M, Piantini A (2016) Volt-time curves of 24 kV porcelain insulators under non-standard impulse waveshapes. In: Proc Lightning Protection (ICLP) Int Conf (2016). pp 1–5 Shigihara M, Piantini A (2016) Volt-time curves of 24 kV porcelain insulators under non-standard impulse waveshapes. In: Proc Lightning Protection (ICLP) Int Conf (2016). pp 1–5
78.
Zurück zum Zitat Bhattacharyya S et al (2016) Electric stress analysis of a medium voltage cable termination subjected to standard and non-standard lightning impulse voltages. In: Proc Intelligent Contr Power Instru (ICICPI) Int Conf (2016). pp 169–173 Bhattacharyya S et al (2016) Electric stress analysis of a medium voltage cable termination subjected to standard and non-standard lightning impulse voltages. In: Proc Intelligent Contr Power Instru (ICICPI) Int Conf (2016). pp 169–173
79.
Zurück zum Zitat Huang K, Zhang X (2016) An experimental study on corona q-u curves under non-standard lightning impulses. J Electrostatics 81:37–41 Huang K, Zhang X (2016) An experimental study on corona q-u curves under non-standard lightning impulses. J Electrostatics 81:37–41
80.
Zurück zum Zitat Lopes G P et al (2016) Lightning withstand of medium voltage cut-out fuses stressed by non-standard impulse shapes experimental results. In: Proc IEEE Electr Insul Conf (EIC) (2016). pp 210–214 Lopes G P et al (2016) Lightning withstand of medium voltage cut-out fuses stressed by non-standard impulse shapes experimental results. In: Proc IEEE Electr Insul Conf (EIC) (2016). pp 210–214
81.
Zurück zum Zitat Shigihara M et al (2018) Generation of non-standard lightning impulse unipolar waveshapes. In: Proc IEEE High Volt Eng App (ICHVE) Int Conf (2018). pp 1–4 Shigihara M et al (2018) Generation of non-standard lightning impulse unipolar waveshapes. In: Proc IEEE High Volt Eng App (ICHVE) Int Conf (2018). pp 1–4
82.
Zurück zum Zitat Mahmood F, Rizk MdEM, Lehtonen M (2019) Risk-based insulation coordination studies for protection of medium-voltage overhead lines against lightning-induced overvoltages. Electr Eng (Springer) 101:311–320 Mahmood F, Rizk MdEM, Lehtonen M (2019) Risk-based insulation coordination studies for protection of medium-voltage overhead lines against lightning-induced overvoltages. Electr Eng (Springer) 101:311–320
83.
Zurück zum Zitat Liang H, Du B, Li J (2020) Non-intrusive measurement of transient electric field distribution under AC and impulse voltages. IEEE Sens J 20(18):10898–10902 Liang H, Du B, Li J (2020) Non-intrusive measurement of transient electric field distribution under AC and impulse voltages. IEEE Sens J 20(18):10898–10902
85.
Zurück zum Zitat Caldwell RO, Darveniza M (1973) Experimental and analytical studies of the effect of non-standard waveshapes on the impulse strength of external insulation. IEEE Trans Power App Syst PAS 92(4):1420–1428 Caldwell RO, Darveniza M (1973) Experimental and analytical studies of the effect of non-standard waveshapes on the impulse strength of external insulation. IEEE Trans Power App Syst PAS 92(4):1420–1428
86.
Zurück zum Zitat Suzuki T, Miyake K (1977) Experimental study of breakdown voltage-time characteristics of large air gaps with lightning impulses. IEEE Trans Power App Syst 96(1):227–233 Suzuki T, Miyake K (1977) Experimental study of breakdown voltage-time characteristics of large air gaps with lightning impulses. IEEE Trans Power App Syst 96(1):227–233
87.
Zurück zum Zitat Okabe S et al (1999) Dielectric characteristics of oil-filled transformer insulation models under non-standard lightning impulse voltages. In: Proc Eng Symp High Volt (1999). (467): 345–348 Okabe S et al (1999) Dielectric characteristics of oil-filled transformer insulation models under non-standard lightning impulse voltages. In: Proc Eng Symp High Volt (1999). (467): 345–348
88.
Zurück zum Zitat Okabe S et al (2001) Dielectric characteristics of oil-filled transformer under non-standard lightning surge waveforms: dielectric characteristics of oil-filled transformer insulation models under fast Front short-duration impulse voltages (Japanese). IEEJ Trans Power Energy 121(6):775–781 Okabe S et al (2001) Dielectric characteristics of oil-filled transformer under non-standard lightning surge waveforms: dielectric characteristics of oil-filled transformer insulation models under fast Front short-duration impulse voltages (Japanese). IEEJ Trans Power Energy 121(6):775–781
89.
Zurück zum Zitat Savadamuthu U, Udayakumar K, Jayashankar V (2002) Modified disruptive effect method as a measure of insulation strength for non-standard lightning waveforms. IEEE Trans Power Del 17(2):510–515 Savadamuthu U, Udayakumar K, Jayashankar V (2002) Modified disruptive effect method as a measure of insulation strength for non-standard lightning waveforms. IEEE Trans Power Del 17(2):510–515
90.
Zurück zum Zitat Rokunohe T et al (2002) Insulation characteristics of SF6 gas for non-standard impulse voltages polarity reversal pulse waveforms (Japanese). T IEE Japan 122-B(11):1232–1237 Rokunohe T et al (2002) Insulation characteristics of SF6 gas for non-standard impulse voltages polarity reversal pulse waveforms (Japanese). T IEE Japan 122-B(11):1232–1237
91.
Zurück zum Zitat Okabe S, Yuasa S (2003) Evaluation method of non-standard lightning impulse waveform for oil-filled transformer. IEEJ Trans Power Energy 123(12):1580–1586 Okabe S, Yuasa S (2003) Evaluation method of non-standard lightning impulse waveform for oil-filled transformer. IEEJ Trans Power Energy 123(12):1580–1586
92.
Zurück zum Zitat Yuasa S, Okabe S (2003) Breakdown characteristics of SF6 gas for non-standard lightning impulse voltage - insulation characteristics of gas gap and spacer surface under single pulse waveform- (Japanese). IEEJ Trans PE 123(10):1242–1249 Yuasa S, Okabe S (2003) Breakdown characteristics of SF6 gas for non-standard lightning impulse voltage - insulation characteristics of gas gap and spacer surface under single pulse waveform- (Japanese). IEEJ Trans PE 123(10):1242–1249
93.
Zurück zum Zitat Kumar JSS et al (2004) Effective model for prediction of impulse strength of oil-impregnated paper insulation under non-standard impulse voltages. In: Proc Power Syst Tech Int Conf (POWERCON) (2004). pp 1619–1622 Kumar JSS et al (2004) Effective model for prediction of impulse strength of oil-impregnated paper insulation under non-standard impulse voltages. In: Proc Power Syst Tech Int Conf (POWERCON) (2004). pp 1619–1622
94.
Zurück zum Zitat Okabe S et al (2004) Dielectric characteristics of oil-filled transformer in the presence of non-standard lightning surge waveforms. Electr Eng Jpn 146(3):39–45 Okabe S et al (2004) Dielectric characteristics of oil-filled transformer in the presence of non-standard lightning surge waveforms. Electr Eng Jpn 146(3):39–45
95.
Zurück zum Zitat Okabe S, Yuasa S (2004) Evaluation method of non-standard lightning impulse waveforms for GIS (Japanese). IEEJ Trans PE 124(1):156–161 Okabe S, Yuasa S (2004) Evaluation method of non-standard lightning impulse waveforms for GIS (Japanese). IEEJ Trans PE 124(1):156–161
96.
Zurück zum Zitat Venkatesan S, Usa S (2005) Impulse volt-time characteristics of oil and OIP insulation. Am J App Sci 2(2):591–596 Venkatesan S, Usa S (2005) Impulse volt-time characteristics of oil and OIP insulation. Am J App Sci 2(2):591–596
97.
Zurück zum Zitat Ancajima A et al (2005) Breakdown characteristics of MV distribution and electric traction lines insulators stressed by standard and short tail lightning impulses. In: 2005 IEEE Russia Power Tech. pp 1–7 Ancajima A et al (2005) Breakdown characteristics of MV distribution and electric traction lines insulators stressed by standard and short tail lightning impulses. In: 2005 IEEE Russia Power Tech. pp 1–7
98.
Zurück zum Zitat Kaneko S, Yokoi T, Okabe S (2006) Insulation characteristics of CO2 gas for non-standard lightning impulse oscillations - evaluation method of non-standard lightning impulse waveform for CO2 gas insulation- (Japanese). IEEJ Trans PE 126(7):701–707 Kaneko S, Yokoi T, Okabe S (2006) Insulation characteristics of CO2 gas for non-standard lightning impulse oscillations - evaluation method of non-standard lightning impulse waveform for CO2 gas insulation- (Japanese). IEEJ Trans PE 126(7):701–707
99.
Zurück zum Zitat Venkatesan S, Usa S (2007) Impulse strength of transformer insulation with non-standard waveshapes. IEEE Trans Power Del 22(4):s4-2221 Venkatesan S, Usa S (2007) Impulse strength of transformer insulation with non-standard waveshapes. IEEE Trans Power Del 22(4):s4-2221
100.
Zurück zum Zitat Okabe S (2007) Evaluation of breakdown characteristics of oil-immersed transformers under non-standard lightning impulse waveforms - definition of non-standard lightning impulse waveforms and insulation characteristics for waveforms including pulses-. IEEE Trans Dielectr Electr Insul 14(1):146–155 Okabe S (2007) Evaluation of breakdown characteristics of oil-immersed transformers under non-standard lightning impulse waveforms - definition of non-standard lightning impulse waveforms and insulation characteristics for waveforms including pulses-. IEEE Trans Dielectr Electr Insul 14(1):146–155
101.
Zurück zum Zitat Okabe S (2007) Evaluation of breakdown characteristics of oil-immersed transformers under non-standard lightning impulse - insulation characteristics for non-standard lightning impulse waveforms with oscillations. IEEE Trans Dielectr Electr Insul 14(3):679–688 Okabe S (2007) Evaluation of breakdown characteristics of oil-immersed transformers under non-standard lightning impulse - insulation characteristics for non-standard lightning impulse waveforms with oscillations. IEEE Trans Dielectr Electr Insul 14(3):679–688
102.
Zurück zum Zitat Mitra P, De A, Chakrabarty A (2009) Investigation on the voltage stresses developed on transformer insulation under non-standard terminal excitations. In: Proc IEEE Region 10 Conf (TENCON) (2009). pp 1–5 Mitra P, De A, Chakrabarty A (2009) Investigation on the voltage stresses developed on transformer insulation under non-standard terminal excitations. In: Proc IEEE Region 10 Conf (TENCON) (2009). pp 1–5
103.
Zurück zum Zitat Okabe S, Tsuboi T, Takami J (2009) Evaluation of k-factor based on insulation characteristics under non-standard lightning impulse waveforms. IEEE Trans Dielectr Electr Insul 16(4):1124–1126 Okabe S, Tsuboi T, Takami J (2009) Evaluation of k-factor based on insulation characteristics under non-standard lightning impulse waveforms. IEEE Trans Dielectr Electr Insul 16(4):1124–1126
104.
Zurück zum Zitat Wang Z et al (2013) The oil-paper insulation breakdown characteristics under non-standard lightning impulse voltages. In: Proc IEEE Annual Report Electr Insul Dielectr Phenomena Conf (2013) pp 883–886 Wang Z et al (2013) The oil-paper insulation breakdown characteristics under non-standard lightning impulse voltages. In: Proc IEEE Annual Report Electr Insul Dielectr Phenomena Conf (2013) pp 883–886
105.
Zurück zum Zitat Krithika G, Usa S (2013) Volt-time characteristics of OIP under non-standard impulses. In: IEEE Condition Assessment Techniques In Electr Syst 1st Int Conf (2013). pp 281–285 Krithika G, Usa S (2013) Volt-time characteristics of OIP under non-standard impulses. In: IEEE Condition Assessment Techniques In Electr Syst 1st Int Conf (2013). pp 281–285
106.
Zurück zum Zitat Sankarganesh A, Karthikeyan K, Sudha R (2013) Breakdown characteristics of transformer under non-standard impulse voltage. Int J Eng Res Tech (IJERT) 2(4):1266–1269 Sankarganesh A, Karthikeyan K, Sudha R (2013) Breakdown characteristics of transformer under non-standard impulse voltage. Int J Eng Res Tech (IJERT) 2(4):1266–1269
107.
Zurück zum Zitat Sarathi R et al (2013) Understanding the breakdown characteristics of liquid nitrogen under non-standard transient voltages. In: IEEE Industry Info Syst 8th Int Conf (ICIIS) (2013). pp 96–99 Sarathi R et al (2013) Understanding the breakdown characteristics of liquid nitrogen under non-standard transient voltages. In: IEEE Industry Info Syst 8th Int Conf (ICIIS) (2013). pp 96–99
108.
Zurück zum Zitat Sun P et al (2015) Study on voltage-number characteristics of transformer insulation under transformer invading non-standard lightning impulses. IEEE Trans Dielectr Electr Insul 22(6):3582–3591 Sun P et al (2015) Study on voltage-number characteristics of transformer insulation under transformer invading non-standard lightning impulses. IEEE Trans Dielectr Electr Insul 22(6):3582–3591
109.
Zurück zum Zitat Wang T et al (2015) Turn-to-turn insulation breakdown characteristics under non-standard lightning impulse voltages. In: Proc IEEE Prop App Dielectr Materials (ICPADM) 11th Int Conf (2015). pp 200–203 Wang T et al (2015) Turn-to-turn insulation breakdown characteristics under non-standard lightning impulse voltages. In: Proc IEEE Prop App Dielectr Materials (ICPADM) 11th Int Conf (2015). pp 200–203
110.
Zurück zum Zitat Wang Z et al (2015) Breakdown characteristics of oil-paper insulation under lightning impulse waveforms with oscillations. IEEE Trans Dielectr Electr Insul 22(5):2620–2627 Wang Z et al (2015) Breakdown characteristics of oil-paper insulation under lightning impulse waveforms with oscillations. IEEE Trans Dielectr Electr Insul 22(5):2620–2627
111.
Zurück zum Zitat Hua J et al (2017) Study on voltage-number characteristics of capacitor insulation under impulse voltages with different waveforms. In: IEEE 19th Int Conf Dielectr Liquids (ICDL) (2017). pp 1–4 Hua J et al (2017) Study on voltage-number characteristics of capacitor insulation under impulse voltages with different waveforms. In: IEEE 19th Int Conf Dielectr Liquids (ICDL) (2017). pp 1–4
112.
Zurück zum Zitat Zhou Y et al (2017) Adjustment of wave front time and overshoot in lightning impulse test for transformer insulation. In: 2017 IEEE conference on electrical insulation and dielectric phenomenon (CEIDP) (2017). pp 270–273 Zhou Y et al (2017) Adjustment of wave front time and overshoot in lightning impulse test for transformer insulation. In: 2017 IEEE conference on electrical insulation and dielectric phenomenon (CEIDP) (2017). pp 270–273
113.
Zurück zum Zitat Mubarak ZA, Usa S (2019) Effect of oil impregnated paper thickness and impulse waveshapes on voltage-number characteristics. Electr Eng (Springer) 101:1189–1197 Mubarak ZA, Usa S (2019) Effect of oil impregnated paper thickness and impulse waveshapes on voltage-number characteristics. Electr Eng (Springer) 101:1189–1197
114.
Metadaten
Titel
The effects of non-standard lightning impulse on electrical insulation: a review
verfasst von
Pradipta Ghosh
Arup Kumar Das
Sovan Dalai
Saibal Chatterjee
Publikationsdatum
09.08.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 6/2022
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-022-01616-2

Weitere Artikel der Ausgabe 6/2022

Electrical Engineering 6/2022 Zur Ausgabe

Neuer Inhalt