Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2020

27.02.2020

The Effects of Solutionizing Temperature on the Microstructure of Allvac 718Plus

verfasst von: Geeta Kumari, Carl Boehlert, S. Sankaran, M. Sundararaman

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A study of the microstructural evolution of a Ni-based superalloy, Allvac 718Plus, in the forged condition, was performed by varying the solutionizing temperature. Different solutionizing temperatures were chosen to obtain different fractions of the gamma prime (Ni3(Al,Ti,Nb), γ′) and delta (Ni3Nb, δ) precipitates. The solutionizing temperatures ranged between 954 to 1100 °C based on the solvus temperature of the γ′ phase. The 954 °C solutionizing treatment resulted in incomplete dissolution of the γ′ phase and a relatively high-volume fraction of the δ phase, which formed preferentially at grain boundaries. The γ′ phase was completely dissolved during each of the other three solutionizing treatments (1000, 1050, and 1100 °C), while the fraction of the δ phase decreased with increasing solutionizing temperature. The 1100 °C solutionizing treatment led to significant grain growth of the matrix γ phase. After solutionizing, the samples were subjected to a standard two-step aging treatment (788 °C for 8 h followed by 704 °C for 8 h) to see the relative effect of the solutionizing on the precipitation during aging.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.J. Donachie and S.J. Donachie, Superalloys A Technical Guide, ASM International, Cleveland, 2002CrossRef M.J. Donachie and S.J. Donachie, Superalloys A Technical Guide, ASM International, Cleveland, 2002CrossRef
2.
Zurück zum Zitat R.C. Reed, The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge, 2006CrossRef R.C. Reed, The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge, 2006CrossRef
3.
Zurück zum Zitat A. Kracke, Superalloys, the Most Successful Alloy System of Modern Times—Past, Present and Future, in Superalloy 718 Deriv., pp. 13–50, 2010. A. Kracke, Superalloys, the Most Successful Alloy System of Modern Times—Past, Present and Future, in Superalloy 718 Deriv., pp. 13–50, 2010.
4.
Zurück zum Zitat D. Furrer and H. Fecht, Ni-Based Superalloys for Turbine Discs, JOM, 1999, 51(1), p 14–17CrossRef D. Furrer and H. Fecht, Ni-Based Superalloys for Turbine Discs, JOM, 1999, 51(1), p 14–17CrossRef
5.
Zurück zum Zitat R. Bowman, Superalloys: A Primer and History, in 9th Int. Symp. Superalloys, vol. 3, pp. 3–6, 2000. R. Bowman, Superalloys: A Primer and History, in 9th Int. Symp. Superalloys, vol. 3, pp. 3–6, 2000.
6.
Zurück zum Zitat R.A. MacKay and M.V. Nathal, Γ′ Coarsening in High Volume Fraction Nickel-Base Alloys, Acta Metall. Mater., 1990, 38(6), p 993–1005CrossRef R.A. MacKay and M.V. Nathal, Γ′ Coarsening in High Volume Fraction Nickel-Base Alloys, Acta Metall. Mater., 1990, 38(6), p 993–1005CrossRef
7.
Zurück zum Zitat X. Xie, G. Wang, J. Dong, C. Xu, W.-D. Cao, and R. Kennedy, Structure Stability Study on a Newly Developed Nickel-Base Superalloy - Allvac 718Plus, in Superalloys 718, 625, 706 Var. Deriv., pp. 179–191, 2005. X. Xie, G. Wang, J. Dong, C. Xu, W.-D. Cao, and R. Kennedy, Structure Stability Study on a Newly Developed Nickel-Base Superalloy - Allvac 718Plus, in Superalloys 718, 625, 706 Var. Deriv., pp. 179–191, 2005.
8.
Zurück zum Zitat W.H. Sharp, High Temperature Alloys for the Gas Turbine—The State of the Art, SAE Tech. Pap., 1965, 74(1966), p 323–332 W.H. Sharp, High Temperature Alloys for the Gas Turbine—The State of the Art, SAE Tech. Pap., 1965, 74(1966), p 323–332
9.
Zurück zum Zitat W. Cao and R. L. Kennedy, Role of Chemistry in 718-type Alloys - Allvac 718Plus Alloy Development, in Superalloy 2004, vol. 3, pp. 1–10, 2004. W. Cao and R. L. Kennedy, Role of Chemistry in 718-type Alloys - Allvac 718Plus Alloy Development, in Superalloy 2004, vol. 3, pp. 1–10, 2004.
10.
Zurück zum Zitat W. Di Cao and R. L. Kennedy, New Developments in Wrought 718-Type Superalloys (Acta Met Feb 05).pdf. W. Di Cao and R. L. Kennedy, New Developments in Wrought 718-Type Superalloys (Acta Met Feb 05).pdf.
11.
Zurück zum Zitat R.A. Jeniski Jr. and R.L. Kennedy, Development of ATI Allvac® 718Plus® Alloy and Applications, in Symp. Recent Advantages Nb-contain Mater. Eur., pp. 1–11, 2006. R.A. Jeniski Jr. and R.L. Kennedy, Development of ATI Allvac® 718Plus® Alloy and Applications, in Symp. Recent Advantages Nb-contain Mater. Eur., pp. 1–11, 2006.
12.
Zurück zum Zitat M. Anderson, A.L. Thielin, F. Bridier, P. Bocher, and J. Savoie, δ Phase Precipitation in Inconel 718 and Associated Mechanical Properties, Mater. Sci. Eng. A, 2017, 679, p 48–55CrossRef M. Anderson, A.L. Thielin, F. Bridier, P. Bocher, and J. Savoie, δ Phase Precipitation in Inconel 718 and Associated Mechanical Properties, Mater. Sci. Eng. A, 2017, 679, p 48–55CrossRef
13.
Zurück zum Zitat S. Antonov, D. Isheim, D. N. Seidman, E. Sun, R. C. Helmink, and S. Tin, y’ Phase Instabilities in High Refractory Content y-y’ Ni-Base Superalloys, in Superalloys 2016 13th Int. Symp., pp. 199–208, 2016. S. Antonov, D. Isheim, D. N. Seidman, E. Sun, R. C. Helmink, and S. Tin, y’ Phase Instabilities in High Refractory Content y-y’ Ni-Base Superalloys, in Superalloys 2016 13th Int. Symp., pp. 199–208, 2016.
14.
Zurück zum Zitat X. Liu, J. Xu, E. Barbero, W. Di Cao, and R.L. Kennedy, Effect of Thermal Treatment on the Fatigue Crack Propagation Behavior of a New Ni-base Superalloy, Mater. Sci. Eng. A, 2008, 474(1–2), p 30–38CrossRef X. Liu, J. Xu, E. Barbero, W. Di Cao, and R.L. Kennedy, Effect of Thermal Treatment on the Fatigue Crack Propagation Behavior of a New Ni-base Superalloy, Mater. Sci. Eng. A, 2008, 474(1–2), p 30–38CrossRef
15.
Zurück zum Zitat C.M. Kuo, Y.T. Yang, H.Y. Bor, C.N. Wei, and C.C. Tai, Aging Effects on the Microstructure and Creep Behavior of Inconel 718 Superalloy, Mater. Sci. Eng. A, 2009, 510, p 289–294CrossRef C.M. Kuo, Y.T. Yang, H.Y. Bor, C.N. Wei, and C.C. Tai, Aging Effects on the Microstructure and Creep Behavior of Inconel 718 Superalloy, Mater. Sci. Eng. A, 2009, 510, p 289–294CrossRef
16.
Zurück zum Zitat T. Radavich, and J.F. Carneiro, A Microstructural Study of Alloy 718 Plus T. Radavich, and J.F. Carneiro, A Microstructural Study of Alloy 718 Plus
17.
Zurück zum Zitat D. Srinivasan, L.U. Lawless, and E.A. Ott, Experimental Determination of TTT Diagram for Ally 718PLUS®, in Superalloys 2012, vol. 3, pp. 759–768, 2012. D. Srinivasan, L.U. Lawless, and E.A. Ott, Experimental Determination of TTT Diagram for Ally 718PLUS®, in Superalloys 2012, vol. 3, pp. 759–768, 2012.
18.
Zurück zum Zitat W. Cao and R.L. Kennedy, Recommendations for Heat Treating Allvac 718Plus Alloy Parts, Allvac Heat Treat. Recomm., 2006, 28110(704), p 1–17 W. Cao and R.L. Kennedy, Recommendations for Heat Treating Allvac 718Plus Alloy Parts, Allvac Heat Treat. Recomm., 2006, 28110(704), p 1–17
19.
Zurück zum Zitat M.V. Nathal and L.J. Ebert, The Influence of Cobalt, Tantalum, and Tungsten on the Microstructure of Single Crystal Nickel-Base Superalloys, Metall. Trans. A, 1985, 16(10), p 1849–1862CrossRef M.V. Nathal and L.J. Ebert, The Influence of Cobalt, Tantalum, and Tungsten on the Microstructure of Single Crystal Nickel-Base Superalloys, Metall. Trans. A, 1985, 16(10), p 1849–1862CrossRef
20.
Zurück zum Zitat S.C.H. Llewelyn et al., The Effect of Ni: Co Ratio on the Elemental Phase Partitioning in γ-γ′ Ni-Co-Al-Ti-Cr Alloys, Acta Mater., 2017, 131, p 296–304CrossRef S.C.H. Llewelyn et al., The Effect of Ni: Co Ratio on the Elemental Phase Partitioning in γ-γ′ Ni-Co-Al-Ti-Cr Alloys, Acta Mater., 2017, 131, p 296–304CrossRef
21.
Zurück zum Zitat X. Xie, C. Xu, G. Wang, J. Dong, W. D. Cao, and R. Kennedy, Ttt Diagram of a Newly Developed Nickel-Base Superalloy—Allvac® 718Plus™, in Superalloys 718, 625, 706 Deriv., pp. 193–202, 2005. X. Xie, C. Xu, G. Wang, J. Dong, W. D. Cao, and R. Kennedy, Ttt Diagram of a Newly Developed Nickel-Base Superalloy—Allvac® 718Plus™, in Superalloys 718, 625, 706 Deriv., pp. 193–202, 2005.
22.
Zurück zum Zitat T.M. Smith et al., Segregation and η Phase Formation Along Stacking Faults During Creep at Intermediate Temperatures in a Ni-Based Superalloy, Acta Mater., 2015, 100, p 19–31CrossRef T.M. Smith et al., Segregation and η Phase Formation Along Stacking Faults During Creep at Intermediate Temperatures in a Ni-Based Superalloy, Acta Mater., 2015, 100, p 19–31CrossRef
23.
Zurück zum Zitat L. Viskari, Y. Cao, M. Norell, G. Sjöberg, and K. Stiller, Grain Boundary Microstructure and Fatigue Crack Growth in Allvac 718Plus Superalloy, Mater. Sci. Eng., A, 2011, 528(6), p 2570–2580CrossRef L. Viskari, Y. Cao, M. Norell, G. Sjöberg, and K. Stiller, Grain Boundary Microstructure and Fatigue Crack Growth in Allvac 718Plus Superalloy, Mater. Sci. Eng., A, 2011, 528(6), p 2570–2580CrossRef
24.
Zurück zum Zitat R. L. Kennedy, Allvac 718Plus, Superalloy for the Next Forty Years, in Superalloys 718, 625, 706 Var. Deriv., pp. 1–14, 2005. R. L. Kennedy, Allvac 718Plus, Superalloy for the Next Forty Years, in Superalloys 718, 625, 706 Var. Deriv., pp. 1–14, 2005.
25.
Zurück zum Zitat M.A. Sofuoglu, F.H. Cakir, S. Gurgen, and M.C. Kushan, A New Superalloy: Allvac 718 Plustm, pp. 8–11, 2017. M.A. Sofuoglu, F.H. Cakir, S. Gurgen, and M.C. Kushan, A New Superalloy: Allvac 718 Plustm, pp. 8–11, 2017.
26.
Zurück zum Zitat M.C. Kushan, S.C. Uzgur, Y. Uzunonat, and F. Diltemiz, ALLVAC 718 Plus™ Superalloy for Aircraft Engine Applications, Recent Adv. Aircr. Technol., 2012, 718, p 75–96 M.C. Kushan, S.C. Uzgur, Y. Uzunonat, and F. Diltemiz, ALLVAC 718 Plus™ Superalloy for Aircraft Engine Applications, Recent Adv. Aircr. Technol., 2012, 718, p 75–96
27.
Zurück zum Zitat C. Joseph, Microstructure Evolution and Mechanical Properties of Haynes 282, Chalmers University of Technology, Gothenburg, 2018 C. Joseph, Microstructure Evolution and Mechanical Properties of Haynes 282, Chalmers University of Technology, Gothenburg, 2018
28.
Zurück zum Zitat A. Ave, 718 Plus ® Data Sourcebook ATI Allvac An Allegheny Technologies Company, pp. 1–71, 2020. A. Ave, 718 Plus ® Data Sourcebook ATI Allvac An Allegheny Technologies Company, pp. 1–71, 2020.
29.
Zurück zum Zitat K. Chen, J. Dong, Z. Yao, T. Ni, and M. Wang, Creep Performance and Damage Mechanism for Allvac 718Plus Superalloy, Mater. Sci. Eng. A, 2018, 738(July), p 308–322CrossRef K. Chen, J. Dong, Z. Yao, T. Ni, and M. Wang, Creep Performance and Damage Mechanism for Allvac 718Plus Superalloy, Mater. Sci. Eng. A, 2018, 738(July), p 308–322CrossRef
30.
Zurück zum Zitat G. Kumari, C. Boehlert, S. Sankaran, and M. Sundararaman, The Effects of Solutionizing and Aging temperature on the Microstructure of Allvac 718plus, in Proceedings of the 30th Heat Treating Society Conference, 2019, pp. 96–105. G. Kumari, C. Boehlert, S. Sankaran, and M. Sundararaman, The Effects of Solutionizing and Aging temperature on the Microstructure of Allvac 718plus, in Proceedings of the 30th Heat Treating Society Conference, 2019, pp. 96–105.
31.
Zurück zum Zitat O.M. Messé, J.S. Barnard, E.J. Pickering, P.A. Midgley, and C.M.F. Rae, On the Precipitation of Delta Phase in ALLVAC® 718Plus, Philos. Mag., 2014, 94(10), p 1132–1152CrossRef O.M. Messé, J.S. Barnard, E.J. Pickering, P.A. Midgley, and C.M.F. Rae, On the Precipitation of Delta Phase in ALLVAC® 718Plus, Philos. Mag., 2014, 94(10), p 1132–1152CrossRef
32.
Zurück zum Zitat A. Mitchell, A. J. Schmalz, C. Schvezov, and S. L. Cockcroft, The Precipitation of Primary Carbides in Alloy 718, in Superalloys 718, 625, 706 Var. Deriv., pp. 65–78, 1994. A. Mitchell, A. J. Schmalz, C. Schvezov, and S. L. Cockcroft, The Precipitation of Primary Carbides in Alloy 718, in Superalloys 718, 625, 706 Var. Deriv., pp. 65–78, 1994.
33.
Zurück zum Zitat M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Carbide Precipitation in Nickel Base Superalloys 718 and 625 and Their Effect on Mechanical Properties, TMS Superalloys, 1997, 718, p 625–706 M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Carbide Precipitation in Nickel Base Superalloys 718 and 625 and Their Effect on Mechanical Properties, TMS Superalloys, 1997, 718, p 625–706
34.
Zurück zum Zitat W.-D. Cao, Solidification and Solid State Phase Transformation of Allvac 718Plus Alloy, in Superalloys 718, 625, 706 Var. Deriv., pp. 165–177, 2005. W.-D. Cao, Solidification and Solid State Phase Transformation of Allvac 718Plus Alloy, in Superalloys 718, 625, 706 Var. Deriv., pp. 165–177, 2005.
35.
Zurück zum Zitat T. D. Sheet, ATI 718Plus ® Alloy 1, vol. 1, pp. 1–5, 2013. T. D. Sheet, ATI 718Plus ® Alloy 1, vol. 1, pp. 1–5, 2013.
36.
Zurück zum Zitat X. Xie, G. Wang, J. Dong, C. Xu, W.-D. Cao, and R. Kennedy, Structure Stability Study on a Newly Developed Nickel-Base Superalloy—Allvac 718Plus, in Superalloys 718, 625, 706 Var. Deriv., pp. 179–191, 2005. X. Xie, G. Wang, J. Dong, C. Xu, W.-D. Cao, and R. Kennedy, Structure Stability Study on a Newly Developed Nickel-Base Superalloy—Allvac 718Plus, in Superalloys 718, 625, 706 Var. Deriv., pp. 179–191, 2005.
37.
Zurück zum Zitat W.D. Cao and R.L. Kennedy, Thermal Stability of Alloys 718 and Allvac 718-ER, in Superalloys 718, 625, 706 Var. Deriv., pp. 455–464, 2001. W.D. Cao and R.L. Kennedy, Thermal Stability of Alloys 718 and Allvac 718-ER, in Superalloys 718, 625, 706 Var. Deriv., pp. 455–464, 2001.
38.
Zurück zum Zitat D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed., CRC Press, Boca Raton, 2009 D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed., CRC Press, Boca Raton, 2009
39.
Zurück zum Zitat T.P. Gabb, J. Gayda, J. Telesman, A. Garg, N. Glenn, and B. Rd, The Effects of Heat Treatment and Microstructure Variations on Disk, pp. 121–130, 2008. T.P. Gabb, J. Gayda, J. Telesman, A. Garg, N. Glenn, and B. Rd, The Effects of Heat Treatment and Microstructure Variations on Disk, pp. 121–130, 2008.
40.
Zurück zum Zitat C. Sommitsch, D. Huber, I.S. Fredrik, S. Mitsche, M. Stockinger, and B. Buchmayr, Recrystallization and Grain Growth in the Nickel-Based Superalloy Allvac 718Plus, Int. J. Mater. Res., 2009, 100(8), p 1088–1098CrossRef C. Sommitsch, D. Huber, I.S. Fredrik, S. Mitsche, M. Stockinger, and B. Buchmayr, Recrystallization and Grain Growth in the Nickel-Based Superalloy Allvac 718Plus, Int. J. Mater. Res., 2009, 100(8), p 1088–1098CrossRef
41.
Zurück zum Zitat O. Caballero, K. Celaya, T. Gomez-Acebo, and A. J. Lopez, Selection of heat treatment parameters for a cast, ALLVAC 718Plus® alloy, in 7th Int. Symp. Superalloy 718 Deriv. 2010, vol. 1, pp. 147–160, 2010. O. Caballero, K. Celaya, T. Gomez-Acebo, and A. J. Lopez, Selection of heat treatment parameters for a cast, ALLVAC 718Plus® alloy, in 7th Int. Symp. Superalloy 718 Deriv. 2010, vol. 1, pp. 147–160, 2010.
42.
Zurück zum Zitat B. Hassan and J. Corney, Grain Boundary Precipitation in Inconel 718 and ATI, 718Plus, Mater. Sci. Technol. (United Kingdom), 2017, 33(16), p 1879–1889CrossRef B. Hassan and J. Corney, Grain Boundary Precipitation in Inconel 718 and ATI, 718Plus, Mater. Sci. Technol. (United Kingdom), 2017, 33(16), p 1879–1889CrossRef
43.
Zurück zum Zitat H. Zhang et al., Delta Precipitation in Wrought Inconel 718 Alloy; the Role of Dynamic Recrystallization, Mater. Charact., 2017, 133(September), p 138–145CrossRef H. Zhang et al., Delta Precipitation in Wrought Inconel 718 Alloy; the Role of Dynamic Recrystallization, Mater. Charact., 2017, 133(September), p 138–145CrossRef
44.
Zurück zum Zitat A. Casanova, N. Martín-Piris, M. Hardy, and C. Rae, Evolution of Secondary Phases in Alloy ATI 718Plus R During Processing, MATEC Web Conf., vol. 14, no. 09003, 2014. A. Casanova, N. Martín-Piris, M. Hardy, and C. Rae, Evolution of Secondary Phases in Alloy ATI 718Plus R During Processing, MATEC Web Conf., vol. 14, no. 09003, 2014.
45.
Zurück zum Zitat W. Cao, Thermal Stability Characterization of Ni-Base ATI, 718Plus ® Superalloy, Superalloys, 2008, 2008, p 789–797 W. Cao, Thermal Stability Characterization of Ni-Base ATI, 718Plus ® Superalloy, Superalloys, 2008, 2008, p 789–797
46.
Zurück zum Zitat J. Andersson, G.P. Sjöberg, L. Viskari, and M. Chaturvedi, Effect of Different Solution Heat Treatments on Hot Ductility of Superalloys Part 2—Allvac 718Plus, Mater. Sci. Technol., 2012, 28(6), p 733–741CrossRef J. Andersson, G.P. Sjöberg, L. Viskari, and M. Chaturvedi, Effect of Different Solution Heat Treatments on Hot Ductility of Superalloys Part 2—Allvac 718Plus, Mater. Sci. Technol., 2012, 28(6), p 733–741CrossRef
47.
Zurück zum Zitat X. Jiang, X. Shi, X. Fan, and Q. Li, Formation of Large Size Precipitate-Free Zones in β Annealing of the Near-βTi-55531 Titanium Alloy, Metals (Basel), 2019, 9(5), p 1–12CrossRef X. Jiang, X. Shi, X. Fan, and Q. Li, Formation of Large Size Precipitate-Free Zones in β Annealing of the Near-βTi-55531 Titanium Alloy, Metals (Basel), 2019, 9(5), p 1–12CrossRef
48.
Zurück zum Zitat F. Masoumi, D. Shahriari, M. Jahazi, J. Cormier, and A. Devaux, Kinetics and Mechanisms of γ′ Reprecipitation in a Ni-based Superalloy, Sci. Rep., 2016, 6, p 28650CrossRef F. Masoumi, D. Shahriari, M. Jahazi, J. Cormier, and A. Devaux, Kinetics and Mechanisms of γ′ Reprecipitation in a Ni-based Superalloy, Sci. Rep., 2016, 6, p 28650CrossRef
49.
Zurück zum Zitat A.J. Goodfellow et al., Gamma Prime Precipitate Evolution During Aging of a Model Nickel-Based Superalloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, 49(3), p 718–728CrossRef A.J. Goodfellow et al., Gamma Prime Precipitate Evolution During Aging of a Model Nickel-Based Superalloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, 49(3), p 718–728CrossRef
50.
Zurück zum Zitat R. Radis, M. Schaffer, M. Albu, G. Kothleitner, P. Pölt, and E. Kozeschnik, Multimodal Size Distributions of γ′ Precipitates During Continuous Cooling of UDIMET 720 Li, Acta Mater., 2009, 57(19), p 5739–5747CrossRef R. Radis, M. Schaffer, M. Albu, G. Kothleitner, P. Pölt, and E. Kozeschnik, Multimodal Size Distributions of γ′ Precipitates During Continuous Cooling of UDIMET 720 Li, Acta Mater., 2009, 57(19), p 5739–5747CrossRef
Metadaten
Titel
The Effects of Solutionizing Temperature on the Microstructure of Allvac 718Plus
verfasst von
Geeta Kumari
Carl Boehlert
S. Sankaran
M. Sundararaman
Publikationsdatum
27.02.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04687-z

Weitere Artikel der Ausgabe 6/2020

Journal of Materials Engineering and Performance 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.