Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 6/2022

01.06.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Effects Produced by the Rate of Heating on the Aging Temperature on the Structure and Hardening of the Ti–10V–2Fe–3Al Titanium Alloy with Different Carbon Contents

verfasst von: M. S. Kalienko, A. V. Zhelnina, A. G. Illarionov

Erschienen in: Physics of Metals and Metallography | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The effect produced by the rate of heating to the aging temperature of 500°C on the character of phase transitions, the formation of a phase-structure state, and the change in hardness in the quenched Ti–10V–2Fe–3Al titanium alloy with different carbon contents has been studied by differential scanning calorimetry (DSC), scanning electron microscopy, X-ray diffraction analysis, and durometry. It has been shown that the change in the heating rate and carbon content of the alloy has an effect on the temperatures of the exothermic peaks of phase transitions associated with that the metastable solid β-solution formed under quenching decomposes in the process of heating. It has been established that a decrease in the rate of heating to the aging temperature from 40 to 10°C/min and an increase in the carbon content from 0.008 to 0.034 wt % in the quenched Ti–10V–2Fe–3Al alloy improves the dispersity of secondary phases formed after quenching and thereby promotes a growth in the alloy hardness. The effect of the heating rate and carbon content on the change in the parameters calculated by the full-profile analysis of X-ray diffraction pattern for the phases detected after treatment is considered.
Literatur
1.
Zurück zum Zitat R. R. Boyer and R. D. Briggs, “The use of β titanium alloys in the aerospace industry,” J. Mater. Eng. Perform. 14, 681–685 (2005). CrossRef R. R. Boyer and R. D. Briggs, “The use of β titanium alloys in the aerospace industry,” J. Mater. Eng. Perform. 14, 681–685 (2005). CrossRef
2.
Zurück zum Zitat J. D. Cotton, R. D. Briggs, R. R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J. C. Fanning, “State of the art in beta titanium alloys for airframe applications,” JOM 67, 1281–1303 (2015). CrossRef J. D. Cotton, R. D. Briggs, R. R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J. C. Fanning, “State of the art in beta titanium alloys for airframe applications,” JOM 67, 1281–1303 (2015). CrossRef
3.
Zurück zum Zitat J. C. Williams and R. R. Boyer, “Opportunities and issues in the application of titanium alloys for aerospace components,” Metals 10 (6), 705 (2020). CrossRef J. C. Williams and R. R. Boyer, “Opportunities and issues in the application of titanium alloys for aerospace components,” Metals 10 (6), 705 (2020). CrossRef
4.
Zurück zum Zitat T. W. Duerig, G. T. Terlinde, and J. C. Williams, “Phase transformations and tensile properties of Ti–10V–2Fe–3AI,” Metall. Trans. A 11 (12), 1987–1998 (1980). CrossRef T. W. Duerig, G. T. Terlinde, and J. C. Williams, “Phase transformations and tensile properties of Ti–10V–2Fe–3AI,” Metall. Trans. A 11 (12), 1987–1998 (1980). CrossRef
5.
Zurück zum Zitat A. V. Zhelnina, M. S. Kalienko, N. V. Shchetnikov, and A. G. Illarionov, “Transformation of the structure and parameters of phases during aging of a titanium Ti–10V–2Fe–3Al alloy and their relation to strengthening,” Phys. Met. Metallogr. 121, 1220–1226 (2020). CrossRef A. V. Zhelnina, M. S. Kalienko, N. V. Shchetnikov, and A. G. Illarionov, “Transformation of the structure and parameters of phases during aging of a titanium Ti–10V–2Fe–3Al alloy and their relation to strengthening,” Phys. Met. Metallogr. 121, 1220–1226 (2020). CrossRef
6.
Zurück zum Zitat B. Wang, Z. Liu, Y. Gao, S. Zhang, and X. Wang, “Microstructural evolution during aging of Ti–10V–2Fe–3Al titanium alloy,” J. University Sci. Technol. Beijing, Miner., Metall., Mater. 14 (4), 335–340 (2007). B. Wang, Z. Liu, Y. Gao, S. Zhang, and X. Wang, “Microstructural evolution during aging of Ti–10V–2Fe–3Al titanium alloy,” J. University Sci. Technol. Beijing, Miner., Metall., Mater. 14 (4), 335–340 (2007).
7.
Zurück zum Zitat O. M. Ivasishin, P. E. Markovsky, Y. V. Matviychuk, S. L. Semiatin, C. H. Ward, and S. Fox, “A comparative study of the mechanical properties of high-strength β-titanium alloys,” J. Alloys Compd. 457 (1–2), 296–309 (2008). CrossRef O. M. Ivasishin, P. E. Markovsky, Y. V. Matviychuk, S. L. Semiatin, C. H. Ward, and S. Fox, “A comparative study of the mechanical properties of high-strength β-titanium alloys,” J. Alloys Compd. 457 (1–2), 296–309 (2008). CrossRef
8.
Zurück zum Zitat D. Kent, G. Wang, W. Wang, and M. S. Dargusch, “Influence of ageing temperature and heating rate on the properties and microstructure of β Ti alloy, Ti–6Cr–5Mo–5V–4Al,” Mater. Sci. Eng., A 531, 98–106 (2012). CrossRef D. Kent, G. Wang, W. Wang, and M. S. Dargusch, “Influence of ageing temperature and heating rate on the properties and microstructure of β Ti alloy, Ti–6Cr–5Mo–5V–4Al,” Mater. Sci. Eng., A 531, 98–106 (2012). CrossRef
9.
Zurück zum Zitat P. Barriobero-Vila, G. Requena, F. Warchomicka, A. Stark, N. Schell, and T. Buslaps, “Phase transformation kinetics during continuous heating of a β-quenched Ti–10V–2Fe–3Al alloy,” J. Mater. Sci. 50 (3), 1412–1426 (2015). CrossRef P. Barriobero-Vila, G. Requena, F. Warchomicka, A. Stark, N. Schell, and T. Buslaps, “Phase transformation kinetics during continuous heating of a β-quenched Ti–10V–2Fe–3Al alloy,” J. Mater. Sci. 50 (3), 1412–1426 (2015). CrossRef
10.
Zurück zum Zitat Y. Ohmori, T. Ogo, K. Nakai, and S. Kobayashi, “Effects of ω-phase precipitation on β → α, α''” transformations in a metastable β titanium alloy,” Mater. Sci. Eng., A 312 (1–2), 182–188 (2015). CrossRef Y. Ohmori, T. Ogo, K. Nakai, and S. Kobayashi, “Effects of ω-phase precipitation on β → α, α''” transformations in a metastable β titanium alloy,” Mater. Sci. Eng., A 312 (1–2), 182–188 (2015). CrossRef
11.
Zurück zum Zitat X. Wu, J. del Prado, Q. Li, A. Huang, D. Hu, and M. H. Loretto, “Analytical electron microscopy of C-free and C-containing Ti–15–3,” Acta Mater. 54 (20), 5433–5448 (2006). CrossRef X. Wu, J. del Prado, Q. Li, A. Huang, D. Hu, and M. H. Loretto, “Analytical electron microscopy of C-free and C-containing Ti–15–3,” Acta Mater. 54 (20), 5433–5448 (2006). CrossRef
12.
Zurück zum Zitat A. V. Zhelnina, M. S. Kalienko, and N. V. Shchetnikov, “Study of the effect of carbon on the deformation behavior and microstructure of a Ti–10V–2Fe–3Al alloy,” Phys. Met. Metallogr. 122 (2), 154–160 (2021). CrossRef A. V. Zhelnina, M. S. Kalienko, and N. V. Shchetnikov, “Study of the effect of carbon on the deformation behavior and microstructure of a Ti–10V–2Fe–3Al alloy,” Phys. Met. Metallogr. 122 (2), 154–160 (2021). CrossRef
13.
Zurück zum Zitat S. Cao, X. Zhou, C. V. S. Lim, R. R. Boyer, J. C. Williams, and X. Wu, “A strong and ductile Ti–3Al–8V–6Cr–4Mo–4Zr (Beta-C) alloy achieved by introducing trace carbon addition and cold work,” Scr. Mater. 178, 124–128 (2020). CrossRef S. Cao, X. Zhou, C. V. S. Lim, R. R. Boyer, J. C. Williams, and X. Wu, “A strong and ductile Ti–3Al–8V–6Cr–4Mo–4Zr (Beta-C) alloy achieved by introducing trace carbon addition and cold work,” Scr. Mater. 178, 124–128 (2020). CrossRef
14.
Zurück zum Zitat T. Alam, P. Kami, L. Cao, S. Nag, C. J. Bettles, X. Wu, and R. Banerjee, “On the role of C addition on alpha precipitation in a beta titanium alloy,” Metall. Mater. Trans. A 45 (3), 1089–1095 (2014). CrossRef T. Alam, P. Kami, L. Cao, S. Nag, C. J. Bettles, X. Wu, and R. Banerjee, “On the role of C addition on alpha precipitation in a beta titanium alloy,” Metall. Mater. Trans. A 45 (3), 1089–1095 (2014). CrossRef
15.
Zurück zum Zitat Z. Q. Chen, D. Hu, M. H. Loretto, and X. Wu, “Influence of 0.2 wt. % C on the aging response of Ti–15–3,” J. Mater. Sci. Technol. 20 (6), 756–764 (2004). CrossRef Z. Q. Chen, D. Hu, M. H. Loretto, and X. Wu, “Influence of 0.2 wt. % C on the aging response of Ti–15–3,” J. Mater. Sci. Technol. 20 (6), 756–764 (2004). CrossRef
16.
Zurück zum Zitat U. Tsvikker, Titanium and its Alloys (Mir, Moscow, 1979) [in Russian]. U. Tsvikker, Titanium and its Alloys (Mir, Moscow, 1979) [in Russian].
17.
Zurück zum Zitat M. S. Kalienko, A. V. Volkov, and A. V. Zhelnina, “Use of full-profile x-ray analysis for estimation of the dispersity of the secondary alpha phase in high-strength titanium alloys,” Crystallogr. Rep. 65, 412–416 (2020). CrossRef M. S. Kalienko, A. V. Volkov, and A. V. Zhelnina, “Use of full-profile x-ray analysis for estimation of the dispersity of the secondary alpha phase in high-strength titanium alloys,” Crystallogr. Rep. 65, 412–416 (2020). CrossRef
18.
Zurück zum Zitat G. Aurelio, A. F. Guillermet, G. J. Cuello, and J. Campo, “Metastable Phases in the Ti–V System: Part I. Neutron Diffraction Study and Assessment of Structural Properties,” Metall. Mater. Trans. A 33 (5), 1307–1317 (2002). CrossRef G. Aurelio, A. F. Guillermet, G. J. Cuello, and J. Campo, “Metastable Phases in the Ti–V System: Part I. Neutron Diffraction Study and Assessment of Structural Properties,” Metall. Mater. Trans. A 33 (5), 1307–1317 (2002). CrossRef
19.
Zurück zum Zitat A. V. Dobromyslov and V. A. Elkin, “The orthorhombic α''-phase in binary titanium-base alloys with d-metals of V–VIII groups,” Mater. Sci. Eng., A 438– 440, 324–326 (2006). CrossRef A. V. Dobromyslov and V. A. Elkin, “The orthorhombic α''-phase in binary titanium-base alloys with d-metals of V–VIII groups,” Mater. Sci. Eng., A 438440, 324–326 (2006). CrossRef
20.
Zurück zum Zitat J. F. Nie, “Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys,” Scr. Mater. 48 (8), 1009–1015 (2003). CrossRef J. F. Nie, “Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys,” Scr. Mater. 48 (8), 1009–1015 (2003). CrossRef
Metadaten
Titel
The Effects Produced by the Rate of Heating on the Aging Temperature on the Structure and Hardening of the Ti–10V–2Fe–3Al Titanium Alloy with Different Carbon Contents
verfasst von
M. S. Kalienko
A. V. Zhelnina
A. G. Illarionov
Publikationsdatum
01.06.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 6/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22060084

Weitere Artikel der Ausgabe 6/2022

Physics of Metals and Metallography 6/2022 Zur Ausgabe