Skip to main content

2013 | OriginalPaper | Buchkapitel

The Electrical Regulation of GI Motility at the Whole-Organ Level

verfasst von : Timothy R. Angeli, Gregory O’Grady, Wim J. E. P. Lammers

Erschienen in: New Advances in Gastrointestinal Motility Research

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A rhythmic bioelectrical activity, composed of slow waves and spikes, plays a central role in coordinating contractions in much of the gastrointestinal tract. This chapter addresses the current state of knowledge of the electrical activity contributing to the regulation of GI contractions, with a specific focus on organ-level excitation in the stomach and small intestine. Emphasis is placed on data obtained from extracellular recordings, which effectively profile patterns of bioelectrical propagation over large tissue scales. Recent advances in understanding whole-organ excitation from high-resolution (HR) electrical mapping studies are discussed in particular detail. Lastly, clinical and research questions of current interest are identified.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alvarez WC, Mahoney LJ (1922) Action currents in stomach and intestine. Am J Physiol 58:476–493 Alvarez WC, Mahoney LJ (1922) Action currents in stomach and intestine. Am J Physiol 58:476–493
2.
Zurück zum Zitat Angeli TR, O’Grady G, Du P, Paskaranandavadivel N, Pullan AJ, Bissett IP, Cheng LK (2013) Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine. Neurogastroenterol Motil [Epub ahead of print] doi: 10:1111/nmo.12085 Angeli TR, O’Grady G, Du P, Paskaranandavadivel N, Pullan AJ, Bissett IP, Cheng LK (2013) Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine. Neurogastroenterol Motil [Epub ahead of print] doi: 10:​1111/​nmo.​12085
3.
Zurück zum Zitat Cannon WB (1902) The movements of the intestines studied by means of the Rontgen rays. Am J Physiol 6:251–277 Cannon WB (1902) The movements of the intestines studied by means of the Rontgen rays. Am J Physiol 6:251–277
4.
Zurück zum Zitat Carlson GM, Bedi BS, Code CF (1972) Mechanism of propagation of intestinal interdigestive myoelectrical complex. Am J Physiol 222:1027–1030PubMed Carlson GM, Bedi BS, Code CF (1972) Mechanism of propagation of intestinal interdigestive myoelectrical complex. Am J Physiol 222:1027–1030PubMed
5.
Zurück zum Zitat Carlson HC, Code CF, Nelson RA (1966) Motor action of the canine gastroduodenal junction: a cineradiographic, pressure and electric study. Dig Dis Sci 11:155–172CrossRef Carlson HC, Code CF, Nelson RA (1966) Motor action of the canine gastroduodenal junction: a cineradiographic, pressure and electric study. Dig Dis Sci 11:155–172CrossRef
6.
Zurück zum Zitat Christensen J, Schedl HP, Clifton JA (1966) The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men in patients with variety of diseases. Gastroenterology 50:309–315PubMed Christensen J, Schedl HP, Clifton JA (1966) The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men in patients with variety of diseases. Gastroenterology 50:309–315PubMed
7.
Zurück zum Zitat Code CF, Szurszewski JH (1970) The effect of duodenal and mid small bowel transection on the frequency gradient of the pacesetter potential in the canine small intestine. J Physiol 207:281–289PubMed Code CF, Szurszewski JH (1970) The effect of duodenal and mid small bowel transection on the frequency gradient of the pacesetter potential in the canine small intestine. J Physiol 207:281–289PubMed
8.
Zurück zum Zitat Code CF, Marlett JA (1975) The interdigestive myo-electric complex of the stomach and small bowel of dogs. J Physiol 246:289–309PubMed Code CF, Marlett JA (1975) The interdigestive myo-electric complex of the stomach and small bowel of dogs. J Physiol 246:289–309PubMed
9.
Zurück zum Zitat Cousins HM, Edwards FR, Hickey H, Hill CE, Hirst GDS (2003) Electrical coupling between the myenteric interstitial cells of Cajal and adjacent muscle layers in the guinea-pig gastric antrum. J Physiol 550:829–844PubMedCrossRef Cousins HM, Edwards FR, Hickey H, Hill CE, Hirst GDS (2003) Electrical coupling between the myenteric interstitial cells of Cajal and adjacent muscle layers in the guinea-pig gastric antrum. J Physiol 550:829–844PubMedCrossRef
10.
Zurück zum Zitat Diamant NE, Bortoff A (1969) Nature of the intestinal slow-wave frequency gradient. Am J Physiol 216:301–307PubMed Diamant NE, Bortoff A (1969) Nature of the intestinal slow-wave frequency gradient. Am J Physiol 216:301–307PubMed
11.
Zurück zum Zitat Diamant NE, Bortoff A (1969) Effects of transection on the intestinal slow-wave frequency gradient. Am J Physiol 216:734–743PubMed Diamant NE, Bortoff A (1969) Effects of transection on the intestinal slow-wave frequency gradient. Am J Physiol 216:734–743PubMed
12.
Zurück zum Zitat Du P, O’Grady G, Egbuji JU, Lammers WJ, Budgett D, Neilsen P, Windsor JA, Pullan A, Cheng LK (2009) High-resolution mapping of in vitro gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann Biomed Eng 37:839–846PubMedCrossRef Du P, O’Grady G, Egbuji JU, Lammers WJ, Budgett D, Neilsen P, Windsor JA, Pullan A, Cheng LK (2009) High-resolution mapping of in vitro gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann Biomed Eng 37:839–846PubMedCrossRef
13.
Zurück zum Zitat Du P, O’Grady G, Cheng LK, Pullan AJ (2010) A multi-scale model of the electrophysiological basis of the human electrogastrogram. Biophys J 99:2784–2792PubMedCrossRef Du P, O’Grady G, Cheng LK, Pullan AJ (2010) A multi-scale model of the electrophysiological basis of the human electrogastrogram. Biophys J 99:2784–2792PubMedCrossRef
14.
Zurück zum Zitat Egbuji JU, O’Grady G, Du P, Cheng LK, Lammers WJEP, Windsor JA, Pullan AJ (2010) Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping. Neurogastroenterol Motil 22:e292–e300 Egbuji JU, O’Grady G, Du P, Cheng LK, Lammers WJEP, Windsor JA, Pullan AJ (2010) Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping. Neurogastroenterol Motil 22:e292–e300
15.
Zurück zum Zitat Farrugia G (2008) Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 20:54–63PubMedCrossRef Farrugia G (2008) Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 20:54–63PubMedCrossRef
16.
Zurück zum Zitat Fleckenstein P, Oigaard A (1978) Electrical spike activity in the human small intestine: a multiple electrode study of fasting diurnal variations. Dig Dis Sci 23:776–780CrossRef Fleckenstein P, Oigaard A (1978) Electrical spike activity in the human small intestine: a multiple electrode study of fasting diurnal variations. Dig Dis Sci 23:776–780CrossRef
17.
Zurück zum Zitat Furness JB (2006) The Enteric Nervous System. Wiley-Blackwell, Oxford Furness JB (2006) The Enteric Nervous System. Wiley-Blackwell, Oxford
18.
Zurück zum Zitat Grover M, Farrugia G, Lurken MS et al (2011) Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology 140(1575–85):e8PubMed Grover M, Farrugia G, Lurken MS et al (2011) Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology 140(1575–85):e8PubMed
19.
Zurück zum Zitat Grundy D, Brookes S (2011) Neural Control of Gastrointestinal Function. Colloquium series on integrated systems physiology: from molecule to function to disease. Morgan & Claypool Life Sciences. Grundy D, Brookes S (2011) Neural Control of Gastrointestinal Function. Colloquium series on integrated systems physiology: from molecule to function to disease. Morgan & Claypool Life Sciences.
20.
Zurück zum Zitat Hasler WL (2006) Small Intestine Motility. Physiology of the Gastrointestinal Tract, Fourth Edition 935–964 Hasler WL (2006) Small Intestine Motility. Physiology of the Gastrointestinal Tract, Fourth Edition 935–964
21.
Zurück zum Zitat Hinder RA, Kelly KA (1977) Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am J Surg 133:29–33PubMedCrossRef Hinder RA, Kelly KA (1977) Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am J Surg 133:29–33PubMedCrossRef
22.
Zurück zum Zitat Hirst GD, Edwards FR (2006) Electrical events underlying organized myogenic contractions of the guinea pig stomach. J Physiol 576:659–665PubMedCrossRef Hirst GD, Edwards FR (2006) Electrical events underlying organized myogenic contractions of the guinea pig stomach. J Physiol 576:659–665PubMedCrossRef
23.
Zurück zum Zitat Hocke M, Schone U, Richert H, Gornert P, Keller J, Layer P, Stallmach A (2009) Every slow-wave impulse is associated with motor activity of the human stomach. Am J Physiol Gastrointest Liver Physiol 296:G709–G716PubMedCrossRef Hocke M, Schone U, Richert H, Gornert P, Keller J, Layer P, Stallmach A (2009) Every slow-wave impulse is associated with motor activity of the human stomach. Am J Physiol Gastrointest Liver Physiol 296:G709–G716PubMedCrossRef
24.
Zurück zum Zitat Huizinga JD, Lammers WJEP (2009) Gut peristalsis is coordinated by a multitude of cooperating mechanisms. Am J Physiol Gastrointest Liver Physiol 296:1–8CrossRef Huizinga JD, Lammers WJEP (2009) Gut peristalsis is coordinated by a multitude of cooperating mechanisms. Am J Physiol Gastrointest Liver Physiol 296:1–8CrossRef
25.
Zurück zum Zitat Huizinga JD, Martz S, Gil V, Wang X, Jimenez M, Parsons S (2011) Two independent networks of interstitial cells of Cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci 5:93PubMedCrossRef Huizinga JD, Martz S, Gil V, Wang X, Jimenez M, Parsons S (2011) Two independent networks of interstitial cells of Cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci 5:93PubMedCrossRef
26.
Zurück zum Zitat Indireshkumar K, Brasseur JG, Faas H, Hebbard GS, Kunz P, Dent J, Feinle C, Li M, Boesiger P, Fried M, Schwizer W (2000) Relative contributions of “pressure pump” and “peristaltic pump” to gastric emptying. Am J Physiol Gastrointest Liver Physiol 278:G604–G616PubMed Indireshkumar K, Brasseur JG, Faas H, Hebbard GS, Kunz P, Dent J, Feinle C, Li M, Boesiger P, Fried M, Schwizer W (2000) Relative contributions of “pressure pump” and “peristaltic pump” to gastric emptying. Am J Physiol Gastrointest Liver Physiol 278:G604–G616PubMed
27.
Zurück zum Zitat Kelly KA, Code CF, Elveback LR (1969) Patterns of canine gastric electrical activity. Am J Physiol 217:461–470PubMed Kelly KA, Code CF, Elveback LR (1969) Patterns of canine gastric electrical activity. Am J Physiol 217:461–470PubMed
28.
Zurück zum Zitat Kelly KA, Code CF (1971) Canine gastric pacemaker. Am J Physiol 220:112–118PubMed Kelly KA, Code CF (1971) Canine gastric pacemaker. Am J Physiol 220:112–118PubMed
29.
Zurück zum Zitat Kelly KA (1980) Gastric emptying of liquids and solids. Roles of the proximal and distal stomach. Am J Physiol 239:G71–G76PubMed Kelly KA (1980) Gastric emptying of liquids and solids. Roles of the proximal and distal stomach. Am J Physiol 239:G71–G76PubMed
30.
Zurück zum Zitat Koh SD, Ward SM, Ordog T, Sanders KM, Horowitz B (2003) Conductances responsible for slow wave generation and propagation in interstitial cells of Cajal. Curr Opin Pharmacol 3:579–582PubMedCrossRef Koh SD, Ward SM, Ordog T, Sanders KM, Horowitz B (2003) Conductances responsible for slow wave generation and propagation in interstitial cells of Cajal. Curr Opin Pharmacol 3:579–582PubMedCrossRef
31.
Zurück zum Zitat Lammers WJEP, Al-Kais A, Singh S, Arafat K, el-Sharkawy TY (1993) Multielectrode mapping of slow-wave activity in the isolated rabbit duodenum. J Appl Physiol 218:1454–1461 Lammers WJEP, Al-Kais A, Singh S, Arafat K, el-Sharkawy TY (1993) Multielectrode mapping of slow-wave activity in the isolated rabbit duodenum. J Appl Physiol 218:1454–1461
32.
Zurück zum Zitat Lammers WJ, el-Kays A, Manefield GW, Arafat K, el-Sharkawy TY (1997) Disturbances in the propagation of the slow wave during acute local ischaemia in the feline small intestine. Eur J of Gastroenterol Hepatol 9:381–388CrossRef Lammers WJ, el-Kays A, Manefield GW, Arafat K, el-Sharkawy TY (1997) Disturbances in the propagation of the slow wave during acute local ischaemia in the feline small intestine. Eur J of Gastroenterol Hepatol 9:381–388CrossRef
33.
Zurück zum Zitat Lammers WJ, Slack JR, Stephen B, Pozzan O (2000) The spatial behaviour of spike patches in the feline gastroduodenal junction in vitro. Neurogastroenterol Motil 12:467–473PubMedCrossRef Lammers WJ, Slack JR, Stephen B, Pozzan O (2000) The spatial behaviour of spike patches in the feline gastroduodenal junction in vitro. Neurogastroenterol Motil 12:467–473PubMedCrossRef
34.
Zurück zum Zitat Lammers WJ, Stephen B, Slack JR, Dhanasekaran S (2002) Anisotropic propagation in the small intestine. Neurogastroenterol Motil 14:357–364PubMedCrossRef Lammers WJ, Stephen B, Slack JR, Dhanasekaran S (2002) Anisotropic propagation in the small intestine. Neurogastroenterol Motil 14:357–364PubMedCrossRef
35.
Zurück zum Zitat Lammers WJ, Stephen B, Slack JR (2002) Similarities and differences in the propagation of slow waves and peristaltic waves. Am J Physiol Gastrointest Liver Physiol 283:G778–G786PubMed Lammers WJ, Stephen B, Slack JR (2002) Similarities and differences in the propagation of slow waves and peristaltic waves. Am J Physiol Gastrointest Liver Physiol 283:G778–G786PubMed
36.
Zurück zum Zitat Lammers WJEP, Ver Donck L, Schuurkes JAJ, Stephen B (2003) Longitudinal and circumferential spike patches in the canine small intestine in vivo. Am J Physiol Gastrointest Liver Physiol 285:G1014–G1027PubMed Lammers WJEP, Ver Donck L, Schuurkes JAJ, Stephen B (2003) Longitudinal and circumferential spike patches in the canine small intestine in vivo. Am J Physiol Gastrointest Liver Physiol 285:G1014–G1027PubMed
37.
Zurück zum Zitat Lammers WJEP, Ver Donck L, Schuurkes JAJ, Stephen B (2005) Peripheral pacemakers and patterns of slow wave propagation in the canine small intestine in vivo. Can J Physiol Pharmacol 83:1031–1043PubMedCrossRef Lammers WJEP, Ver Donck L, Schuurkes JAJ, Stephen B (2005) Peripheral pacemakers and patterns of slow wave propagation in the canine small intestine in vivo. Can J Physiol Pharmacol 83:1031–1043PubMedCrossRef
38.
Zurück zum Zitat Lammers WJEP (2005) Spatial and temporal coupling between slow waves and pendular contractions. Am J Physiol 289:G898–G903CrossRef Lammers WJEP (2005) Spatial and temporal coupling between slow waves and pendular contractions. Am J Physiol 289:G898–G903CrossRef
39.
Zurück zum Zitat Lammers WJ, Stephen B (2008) Origin and propagation of individual slow waves along the intact feline small intestine. Exp Physiol 93:334–346PubMedCrossRef Lammers WJ, Stephen B (2008) Origin and propagation of individual slow waves along the intact feline small intestine. Exp Physiol 93:334–346PubMedCrossRef
40.
Zurück zum Zitat Lammers WJEP, Ver Donck L, Stephen B, Smets D, Schuurkes JAJ (2008) Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology 135:1601–1611PubMedCrossRef Lammers WJEP, Ver Donck L, Stephen B, Smets D, Schuurkes JAJ (2008) Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology 135:1601–1611PubMedCrossRef
41.
Zurück zum Zitat Lammers WJ, Ver Donck L, Stephen B, Smets D, Schuurkes JA (2009) Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am J Physiol Gastrointest Liver Physiol 296:1200–1210 Lammers WJ, Ver Donck L, Stephen B, Smets D, Schuurkes JA (2009) Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am J Physiol Gastrointest Liver Physiol 296:1200–1210
42.
Zurück zum Zitat Lammers WJEP, Stephen B, Karam SM (2012) Functional reentry and circus movement arrhythmias in the small intestine of normal and diabetic rats. Am J Physiol 302:G684–G689 Lammers WJEP, Stephen B, Karam SM (2012) Functional reentry and circus movement arrhythmias in the small intestine of normal and diabetic rats. Am J Physiol 302:G684–G689
43.
Zurück zum Zitat Lees-Green R, Du P, O’Grady G, Beyder A, Farrugia G, Pullan AJ (2011) Biophysically based modeling of the interstitial cells of Cajal: current status and future perspectives. Front Physiol 2(29):1–19 Lees-Green R, Du P, O’Grady G, Beyder A, Farrugia G, Pullan AJ (2011) Biophysically based modeling of the interstitial cells of Cajal: current status and future perspectives. Front Physiol 2(29):1–19
44.
Zurück zum Zitat Morrison P, Miedema BW, Kohler L, Kelly KA (1990) Electrical dysrhythmias in the roux jejunal limb: cause and treatment. Am J Surg 160:252–256PubMedCrossRef Morrison P, Miedema BW, Kohler L, Kelly KA (1990) Electrical dysrhythmias in the roux jejunal limb: cause and treatment. Am J Surg 160:252–256PubMedCrossRef
45.
Zurück zum Zitat O’Grady G, Du P, Cheng LK, Egbuji JU, Lammers WJEP, Windsor JA, Pullan AJ (2010) The origin and propagation of human gastric slow wave activity defined by high-resolution mapping. Am J Physiol Gastrointest Liver Physiol 299:585–592 O’Grady G, Du P, Cheng LK, Egbuji JU, Lammers WJEP, Windsor JA, Pullan AJ (2010) The origin and propagation of human gastric slow wave activity defined by high-resolution mapping. Am J Physiol Gastrointest Liver Physiol 299:585–592
46.
Zurück zum Zitat O’Grady G, Du P, Lammers WJEP, Egbuji JU, Mithraratne P, Chen JDZ, Cheng LK, Windsor JA, Pullan AJ (2010) High-resolution entrainment mapping of gastric pacing: a new analytical tool. Am J Physiol Gastrointest Liver Physiol 298:G314–G321PubMedCrossRef O’Grady G, Du P, Lammers WJEP, Egbuji JU, Mithraratne P, Chen JDZ, Cheng LK, Windsor JA, Pullan AJ (2010) High-resolution entrainment mapping of gastric pacing: a new analytical tool. Am J Physiol Gastrointest Liver Physiol 298:G314–G321PubMedCrossRef
47.
Zurück zum Zitat O’Grady G, Egbuji JU, Du P, Lammers WJEP, Cheng LK, Windsor JA, Pullan AJ (2011) High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia. Neurogastroenterol Motil 23:e345–e355PubMedCrossRef O’Grady G, Egbuji JU, Du P, Lammers WJEP, Cheng LK, Windsor JA, Pullan AJ (2011) High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia. Neurogastroenterol Motil 23:e345–e355PubMedCrossRef
48.
Zurück zum Zitat O’Grady G, Du P, Paskaranandavadivel N, Angeli TR, Lammers WJEP, Farrugia G, Asirvatham SJ, Windsor JA, Pullan AJ, Cheng LK (2012) Rapid high-amplitude cumferential slow wave conduction during normal gastric pacemaking and dysrhythmias. Neurogastroenterol Motil 24(7):e299–312 O’Grady G, Du P, Paskaranandavadivel N, Angeli TR, Lammers WJEP, Farrugia G, Asirvatham SJ, Windsor JA, Pullan AJ, Cheng LK (2012) Rapid high-amplitude cumferential slow wave conduction during normal gastric pacemaking and dysrhythmias. Neurogastroenterol Motil 24(7):e299–312
49.
Zurück zum Zitat O'Grady G, Angeli TR, Du P, Lahr C, Lammers WJEP, Windsor JA, Abell TL, Farrugia G, Pullan AJ, Cheng LK (2012) Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 143(3):589–598 O'Grady G, Angeli TR, Du P, Lahr C, Lammers WJEP, Windsor JA, Abell TL, Farrugia G, Pullan AJ, Cheng LK (2012) Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 143(3):589–598
50.
Zurück zum Zitat Parkman HP, Hasler WL, Barnett JL, Eaker EY (2003) Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterol Motil 2003:89–102CrossRef Parkman HP, Hasler WL, Barnett JL, Eaker EY (2003) Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterol Motil 2003:89–102CrossRef
51.
Zurück zum Zitat Sanders KM (2008) Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil 20:39–53PubMedCrossRef Sanders KM (2008) Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil 20:39–53PubMedCrossRef
52.
Zurück zum Zitat Seidel SA, Hegde SS, Bradshaw A, Ladipo JK, Richards WO (1999) Intestinal tachyarrhythmias during small bowel ischemia. Am J Physiol Gastrointest Liver Physiol 277:G993–G999 Seidel SA, Hegde SS, Bradshaw A, Ladipo JK, Richards WO (1999) Intestinal tachyarrhythmias during small bowel ischemia. Am J Physiol Gastrointest Liver Physiol 277:G993–G999
53.
Zurück zum Zitat Sha L, Farrugia G, Harmsen WS, Szurszewski JH (2007) Membrane potential gradient is carbon monoxide-dependent in mouse and human small intestine. Am J Physiol 293(2):G438–G445 Sha L, Farrugia G, Harmsen WS, Szurszewski JH (2007) Membrane potential gradient is carbon monoxide-dependent in mouse and human small intestine. Am J Physiol 293(2):G438–G445
54.
Zurück zum Zitat Shafik A, Shafik AA, El-Sibai O, Mostafa M (2003) Electrical activity of the colon in subjects with constipation due to total colonic inertia: an electrophysiologic study. Arch Surg 138:1007–1011PubMedCrossRef Shafik A, Shafik AA, El-Sibai O, Mostafa M (2003) Electrical activity of the colon in subjects with constipation due to total colonic inertia: an electrophysiologic study. Arch Surg 138:1007–1011PubMedCrossRef
55.
Zurück zum Zitat Suzuki N, Prosser CL, DeVos W (1986) Waxing and waning of slow waves in intestinal musculature. Am J Physiol Gastrointest Liver Physiol 250:G28–G34 Suzuki N, Prosser CL, DeVos W (1986) Waxing and waning of slow waves in intestinal musculature. Am J Physiol Gastrointest Liver Physiol 250:G28–G34
56.
Zurück zum Zitat Szurszewski JH (1969) A migrating electric complex of the canine small intestine. Am J Physiol 217:1757–1763PubMed Szurszewski JH (1969) A migrating electric complex of the canine small intestine. Am J Physiol 217:1757–1763PubMed
57.
Zurück zum Zitat Szurszewski JH, Elveback LR, Code CF (1970) Configuration and frequency gradient of electric slow wave over canine small bowel. Am J Physiol 218:1468–1473PubMed Szurszewski JH, Elveback LR, Code CF (1970) Configuration and frequency gradient of electric slow wave over canine small bowel. Am J Physiol 218:1468–1473PubMed
58.
Zurück zum Zitat Szurszewski JH, Farrugia G (2004) Carbon monoxide is an endogenous hyperpolarizing factor in the gastrointestinal tract. Neurogastroenterol Motil 16(Suppl 1):81–85PubMedCrossRef Szurszewski JH, Farrugia G (2004) Carbon monoxide is an endogenous hyperpolarizing factor in the gastrointestinal tract. Neurogastroenterol Motil 16(Suppl 1):81–85PubMedCrossRef
59.
Zurück zum Zitat van Helden DF, Laver DR, Holdsworth J, Imtiaz MS (2010) The generation and propagation of gastric slow waves. Clin Exp Pharmacol Physiol 37:516–524PubMedCrossRef van Helden DF, Laver DR, Holdsworth J, Imtiaz MS (2010) The generation and propagation of gastric slow waves. Clin Exp Pharmacol Physiol 37:516–524PubMedCrossRef
60.
Zurück zum Zitat Verhagen MA, Luijk HD, Samsom M, Smout AJ (1998) Effect of meal temperature on the frequency of gastric myoelectrical activity. Neurogastroenterol Motil 10:175–181PubMedCrossRef Verhagen MA, Luijk HD, Samsom M, Smout AJ (1998) Effect of meal temperature on the frequency of gastric myoelectrical activity. Neurogastroenterol Motil 10:175–181PubMedCrossRef
61.
Zurück zum Zitat Wang XY, Lammers WJ, Bercik P, Huizinga JD (2005) Lack of pyloric interstitial cells of Cajal explains distinct peristaltic motor patterns in stomach and small intestine. Am J Physiol Gastrointest Liver Physiol 289:G539–G549PubMedCrossRef Wang XY, Lammers WJ, Bercik P, Huizinga JD (2005) Lack of pyloric interstitial cells of Cajal explains distinct peristaltic motor patterns in stomach and small intestine. Am J Physiol Gastrointest Liver Physiol 289:G539–G549PubMedCrossRef
Metadaten
Titel
The Electrical Regulation of GI Motility at the Whole-Organ Level
verfasst von
Timothy R. Angeli
Gregory O’Grady
Wim J. E. P. Lammers
Copyright-Jahr
2013
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-6561-0_6

Neuer Inhalt