Skip to main content
Erschienen in: Topics in Catalysis 5-7/2016

30.12.2015 | Original Paper

The Electronic Structure of Saturated NaCl and NaI Solutions in Contact with a Gold Substrate

verfasst von: Héloïse Tissot, Jean-Jacques Gallet, Fabrice Bournel, Giorgia Olivieri, Mathieu G. Silly, Fausto Sirotti, Anthony Boucly, François Rochet

Erschienen in: Topics in Catalysis | Ausgabe 5-7/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The near ambient pressure X-ray photoelectron spectroscopy set up installed recently at SOLEIL synchrotron facility is used to study the electronic structure of NaCl and NaI saturated solutions formed on a gold substrate. The binding energies of the solution constituents are measured with respect to the Fermi level of the gold substrate. The C1s binding energy of the aliphatic contaminant floating at the surface of the solution is an evidence that the Fermi level in the metal and in the solution are aligned. The use of the Fermi level common energy reference is an added value with respect to previous works realized with micro-jets that were calibrated in energy with respect to vacuum level. We observe that the water valence molecular levels binding energies, and hence the Fermi positioning in the gap of the liquid, the Na+ 2s binding energy and even the work function are independent of the nature of the anions. The secondary electron energy distribution curves show that the work functions of the two solutions are equal within experimental uncertainty. We discuss this point considering the different ion distributions at the surface (related to the different size and polarizability of the anions), and the possible contribution of carbon contaminants. We compare the WF values extracted from the secondary electron edges to alternative measurements using the binding energy of the gas phase O1s or 1b1 spectra (referenced to the gold Fermi level). The ionization energies (referenced to the vacuum level), that we obtain by adding the work function to the measured binding energies, are in good accord with previously published works using micro-jets, obtained, however, at much lower solute concentration. Finally we discuss the origin of the Fermi level pinning in the liquid band gap and consider the possibility that the H+/H2 redox level is aligned with the metal Fermi level.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Note that the electrochemical potential in the electrolyte is equivalent to the redox potential, via an energy rescaling, discussed in detail in Refs. [8, 54, 78]. Note also that Fermi level and electrochemical potential are synonymous.
 
2
The CH x peak of the NaCl solution is found at a BE ~ 0.4 eV higher than that of the CH x in the NaI solution. Its fwhm is also notably larger (1.55 vs. 1.12 eV). This is due to a “beyond-first-neighbor” chemical shift (e.g. the CH3 moiety in ethoxy groups is shifted up in BE by 0.5 eV with respect to the CH3 component in ethyl moieties [81]). As the carbon in the NaCl solution is much more oxidized than the carbon in the NaI solution, the CH x component broadens and shifts up in energy. Given that the weight of the oxidized carbons in the NaI solution is small, the aliphatic component at 284.8 eV can be used to determine the FL. Issues related to the use of surface contamination carbon to calibrate the BE scale are emphasized in Ref. [59].
 
3
We have no explanation for the difference, as the energy resolution is not given in Ref. [52].
 
4
The mean inner electrostatic potential energy V0 is calculated to be ~4.3 eV for a saturated NaCl solution in Ref. [69] but, unfortunately, no profile is given.
 
5
The secondary electrons that approach the interface from the inside of the liquid have a velocity \(v\) equal to \(v = \sqrt {\frac{{2 \times KE^{in} }}{m}}\) where \(KE^{in}\) is the kinetic energy in the liquid, and m the electron mass. The minimum value of \(KE^{in}\) is the effective potential \(V^{eff}\) referenced to the VL. \(V^{eff}\) is the sum of the mean inner electrostatic potential energy V 0 (Hartree potential) and of the exchange and correlation energy [48]. An ab initio calculation gives a mean inner electrostatic potential energy of 4.3 eV for the saturated NaCl solution [69]. However, there are no estimates of the exchange and correlation energy of liquid water, despite it should be relevant for low energy (≪ 1 keV) electrons. Thus V 0 is a lower bound of \(V^{eff}\).
 
6
This may be surprising as, according to Coe [22] the onset of the photoelectron yield should occur at photon energies smaller than the vertical transitions of XPS.
 
7
At a working pressure of 5 mbar in the analysis chamber, the Q-pole installed in the second stage of the analyzer pumping system gives the partial pressures of H2O (2 × 10−8 mbar), H2 (3 × 10−9 mbar) and O2 (2 × 10−10 mbar). The main pollutant in the chamber is H2. At a pressure of 6 × 10−9 mbar in the chamber (residual) the partial pressures measured by the Q-pole are 5 × 10−11 mbar for H2O, 6.5 × 10−10 mbar for H2 and <10−13 for O2. An upper bound value of H2 partial pressure is calculated assuming that the partial pressures measured by the Q-pole in the sampled gas are proportional to those in the analysis chamber.
 
Literatur
1.
Zurück zum Zitat Ghosal S, Shbeeb A, Hemminger JC (2000) Surface segregation of bromine in bromide doped NaCl: implications for the seasonal variations in Arctic ozone. Geophys Res Lett 27:1879–1882. doi:10.1029/2000GL011381 CrossRef Ghosal S, Shbeeb A, Hemminger JC (2000) Surface segregation of bromine in bromide doped NaCl: implications for the seasonal variations in Arctic ozone. Geophys Res Lett 27:1879–1882. doi:10.​1029/​2000GL011381 CrossRef
5.
Zurück zum Zitat Juzeliūnas E, Sudavičius A, Jüttner K, Fürbeth W (2003) Study of initial stages of Al–Mg alloy corrosion in water, chloride and Cu(II) environment by a scanning Kelvin probe and XPS. Electrochem Commun 5:154–158. doi:10.1016/S1388-2481(03)00015-8 CrossRef Juzeliūnas E, Sudavičius A, Jüttner K, Fürbeth W (2003) Study of initial stages of Al–Mg alloy corrosion in water, chloride and Cu(II) environment by a scanning Kelvin probe and XPS. Electrochem Commun 5:154–158. doi:10.​1016/​S1388-2481(03)00015-8 CrossRef
13.
14.
Zurück zum Zitat Zhang Z, Yates JT (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551. doi:10.1021/cr3000626 CrossRef Zhang Z, Yates JT (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551. doi:10.​1021/​cr3000626 CrossRef
15.
Zurück zum Zitat Weinhardt L, Blum M, Fuchs O et al (2013) Soft X-ray and electron spectroscopy to determine the electronic structure of materials for photoelectrochemical hydrogen production. J Electron Spectros Relat Phenomena 190:106–112. doi:10.1016/j.elspec.2012.11.015 CrossRef Weinhardt L, Blum M, Fuchs O et al (2013) Soft X-ray and electron spectroscopy to determine the electronic structure of materials for photoelectrochemical hydrogen production. J Electron Spectros Relat Phenomena 190:106–112. doi:10.​1016/​j.​elspec.​2012.​11.​015 CrossRef
20.
Zurück zum Zitat Gaiduk AP, Zhang C, Gygi F, Galli G (2014) Structural and electronic properties of aqueous NaCl solutions from ab initio molecular dynamics simulations with hybrid density functionals. Chem Phys Lett 604:89–96. doi:10.1016/j.cplett.2014.04.037 CrossRef Gaiduk AP, Zhang C, Gygi F, Galli G (2014) Structural and electronic properties of aqueous NaCl solutions from ab initio molecular dynamics simulations with hybrid density functionals. Chem Phys Lett 604:89–96. doi:10.​1016/​j.​cplett.​2014.​04.​037 CrossRef
21.
Zurück zum Zitat Adriaanse C, Cheng J, Chau V et al (2012) Aqueous redox chemistry and the electronic band structure of liquid water. J Phys Chem Lett 3:3411–3415. doi:10.1021/jz3015293 CrossRef Adriaanse C, Cheng J, Chau V et al (2012) Aqueous redox chemistry and the electronic band structure of liquid water. J Phys Chem Lett 3:3411–3415. doi:10.​1021/​jz3015293 CrossRef
22.
Zurück zum Zitat Coe JV, Earhart AD, Cohen MH et al (1997) Using cluster studies to approach the electronic structure of bulk water: reassessing the vacuum level, conduction band edge, and band gap of water. J Chem Phys 107:6023–6031. doi:10.1063/1.474271 CrossRef Coe JV, Earhart AD, Cohen MH et al (1997) Using cluster studies to approach the electronic structure of bulk water: reassessing the vacuum level, conduction band edge, and band gap of water. J Chem Phys 107:6023–6031. doi:10.​1063/​1.​474271 CrossRef
25.
Zurück zum Zitat Winter B, Weber R, Widdra W et al (2004) Full valence band photoemission from liquid water using EUV synchrotron radiation. J Phys Chem A 108:2625–2632. doi:10.1021/jp030263q CrossRef Winter B, Weber R, Widdra W et al (2004) Full valence band photoemission from liquid water using EUV synchrotron radiation. J Phys Chem A 108:2625–2632. doi:10.​1021/​jp030263q CrossRef
26.
Zurück zum Zitat Winter B, Faubel M, Hertel IV et al (2006) Electron binding energies of hydrated H3O+ and OH−: photoelectron spectroscopy of aqueous acid and base solutions combined with electronic structure calculations. J Am Chem Soc 128:3864–3865. doi:10.1021/ja0579154 CrossRef Winter B, Faubel M, Hertel IV et al (2006) Electron binding energies of hydrated H3O+ and OH: photoelectron spectroscopy of aqueous acid and base solutions combined with electronic structure calculations. J Am Chem Soc 128:3864–3865. doi:10.​1021/​ja0579154 CrossRef
27.
Zurück zum Zitat Seidel R, Thürmer S, Winter B (2011) Photoelectron spectroscopy meets aqueous solution: studies from a vacuum liquid microjet. J Phys Chem Lett 2:633–641. doi:10.1021/jz101636y CrossRef Seidel R, Thürmer S, Winter B (2011) Photoelectron spectroscopy meets aqueous solution: studies from a vacuum liquid microjet. J Phys Chem Lett 2:633–641. doi:10.​1021/​jz101636y CrossRef
29.
Zurück zum Zitat Weber R, Winter B, Schmidt PM et al (2004) Photoemission from aqueous alkali-metal–iodide salt solutions using EUV synchrotron radiation. J Phys Chem B 108:4729–4736. doi:10.1021/jp030776x CrossRef Weber R, Winter B, Schmidt PM et al (2004) Photoemission from aqueous alkali-metal–iodide salt solutions using EUV synchrotron radiation. J Phys Chem B 108:4729–4736. doi:10.​1021/​jp030776x CrossRef
30.
Zurück zum Zitat Winter B, Weber R, Hertel IV et al (2005) Electron binding energies of aqueous alkali and halide ions: EUV photoelectron spectroscopy of liquid solutions and combined ab initio and molecular dynamics calculations. J Am Chem Soc 127:7203–7214. doi:10.1021/ja042908l CrossRef Winter B, Weber R, Hertel IV et al (2005) Electron binding energies of aqueous alkali and halide ions: EUV photoelectron spectroscopy of liquid solutions and combined ab initio and molecular dynamics calculations. J Am Chem Soc 127:7203–7214. doi:10.​1021/​ja042908l CrossRef
31.
33.
Zurück zum Zitat Petersen PB, Saykally RJ (2006) On the nature of ions at the liquid water surface. Annu Rev Phys Chem 57:333–364CrossRef Petersen PB, Saykally RJ (2006) On the nature of ions at the liquid water surface. Annu Rev Phys Chem 57:333–364CrossRef
34.
Zurück zum Zitat Liu D, Ma G, Levering LM, Allen HC (2004) Vibrational spectroscopy of aqueous sodium halide solutions and air–liquid interfaces: observation of increased interfacial depth. J Phys Chem B 108:2252–2260. doi:10.1021/jp036169r CrossRef Liu D, Ma G, Levering LM, Allen HC (2004) Vibrational spectroscopy of aqueous sodium halide solutions and air–liquid interfaces: observation of increased interfacial depth. J Phys Chem B 108:2252–2260. doi:10.​1021/​jp036169r CrossRef
36.
Zurück zum Zitat Arima K, Jiang P, Deng X et al (2010) Water adsorption, solvation, and deliquescence of potassium bromide thin films on SiO2 studied by ambient-pressure X-ray photoelectron spectroscopy. J Phys Chem C 114:14900–14906. doi:10.1021/jp101683z CrossRef Arima K, Jiang P, Deng X et al (2010) Water adsorption, solvation, and deliquescence of potassium bromide thin films on SiO2 studied by ambient-pressure X-ray photoelectron spectroscopy. J Phys Chem C 114:14900–14906. doi:10.​1021/​jp101683z CrossRef
37.
Zurück zum Zitat Krisch MJ, D’Auria R, Brown MA et al (2007) The effect of an organic surfactant on the liquid–vapor interface of an electrolyte solution. J Phys Chem C 111:13497–13509. doi:10.1021/jp073078b CrossRef Krisch MJ, D’Auria R, Brown MA et al (2007) The effect of an organic surfactant on the liquid–vapor interface of an electrolyte solution. J Phys Chem C 111:13497–13509. doi:10.​1021/​jp073078b CrossRef
38.
Zurück zum Zitat Cheng MH, Callahan KM, Margarella AM et al (2012) Ambient pressure X-ray photoelectron spectroscopy and molecular dynamics simulation studies of liquid/vapor interfaces of aqueous NaCl, RbCl, and RbBr solutions. J Phys Chem C 116:4545–4555. doi:10.1021/jp205500h CrossRef Cheng MH, Callahan KM, Margarella AM et al (2012) Ambient pressure X-ray photoelectron spectroscopy and molecular dynamics simulation studies of liquid/vapor interfaces of aqueous NaCl, RbCl, and RbBr solutions. J Phys Chem C 116:4545–4555. doi:10.​1021/​jp205500h CrossRef
39.
Zurück zum Zitat Winter B, Weber R, Schmidt PM et al (2004) Molecular structure of surface-active salt solutions: photoelectron spectroscopy and molecular dynamics simulations of aqueous tetrabutylammonium iodide. J Phys Chem B 108:14558–14564. doi:10.1021/jp0493531 CrossRef Winter B, Weber R, Schmidt PM et al (2004) Molecular structure of surface-active salt solutions: photoelectron spectroscopy and molecular dynamics simulations of aqueous tetrabutylammonium iodide. J Phys Chem B 108:14558–14564. doi:10.​1021/​jp0493531 CrossRef
40.
Zurück zum Zitat Brown MA, D’Auria R, Kuo I-FW et al (2008) Ion spatial distributions at the liquid-vapor interface of aqueous potassium fluoride solutions. Phys Chem Chem Phys 10:4778–4784. doi:10.1039/b807041e CrossRef Brown MA, D’Auria R, Kuo I-FW et al (2008) Ion spatial distributions at the liquid-vapor interface of aqueous potassium fluoride solutions. Phys Chem Chem Phys 10:4778–4784. doi:10.​1039/​b807041e CrossRef
41.
Zurück zum Zitat Ottosson N, Faubel M, Bradforth SE et al (2010) Photoelectron spectroscopy of liquid water and aqueous solution: electron effective attenuation lengths and emission-angle anisotropy. J Electron Spectros Relat Phenomena 177:60–70. doi:10.1016/j.elspec.2009.08.007 CrossRef Ottosson N, Faubel M, Bradforth SE et al (2010) Photoelectron spectroscopy of liquid water and aqueous solution: electron effective attenuation lengths and emission-angle anisotropy. J Electron Spectros Relat Phenomena 177:60–70. doi:10.​1016/​j.​elspec.​2009.​08.​007 CrossRef
42.
Zurück zum Zitat Ottosson N, Heyda J, Wernersson E et al (2010) The influence of concentration on the molecular surface structure of simple and mixed aqueous electrolytes. Phys Chem Chem Phys 12:10693–10700. doi:10.1039/c0cp00365d CrossRef Ottosson N, Heyda J, Wernersson E et al (2010) The influence of concentration on the molecular surface structure of simple and mixed aqueous electrolytes. Phys Chem Chem Phys 12:10693–10700. doi:10.​1039/​c0cp00365d CrossRef
46.
Zurück zum Zitat Dos Santos AP, Diehl A, Levin Y (2010) Surface tensions, surface potentials, and the Hofmeister series of electrolyte solutions. Langmuir 26:10778–10783. doi:10.1021/la100604k CrossRef Dos Santos AP, Diehl A, Levin Y (2010) Surface tensions, surface potentials, and the Hofmeister series of electrolyte solutions. Langmuir 26:10778–10783. doi:10.​1021/​la100604k CrossRef
47.
48.
Zurück zum Zitat Egelhoff WF (1987) Core-level binding-energy shift at surface and in solids. Surf Sci Rep 6:253–415CrossRef Egelhoff WF (1987) Core-level binding-energy shift at surface and in solids. Surf Sci Rep 6:253–415CrossRef
50.
Zurück zum Zitat Nishizawa K, Kurahashi N, Sekiguchi K et al (2011) High-resolution soft X-ray photoelectron spectroscopy of liquid water. Phys Chem Chem Phys 13:413–417. doi:10.1039/c0cp01636e CrossRef Nishizawa K, Kurahashi N, Sekiguchi K et al (2011) High-resolution soft X-ray photoelectron spectroscopy of liquid water. Phys Chem Chem Phys 13:413–417. doi:10.​1039/​c0cp01636e CrossRef
51.
52.
Zurück zum Zitat Faubel M, Steiner B, Toennies JP (1997) Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J Chem Phys 106:9013. doi:10.1063/1.474034 CrossRef Faubel M, Steiner B, Toennies JP (1997) Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J Chem Phys 106:9013. doi:10.​1063/​1.​474034 CrossRef
53.
Zurück zum Zitat Morgner H, Oberbrodhage J, Richter K, Roth K (1991) The gas-liquid phase transition shift at surfaces: experimental method and interpretation. J Electron Spectros Relat Phenomena 57:61–77. doi:10.1016/0368-2048(91)85014-K CrossRef Morgner H, Oberbrodhage J, Richter K, Roth K (1991) The gas-liquid phase transition shift at surfaces: experimental method and interpretation. J Electron Spectros Relat Phenomena 57:61–77. doi:10.​1016/​0368-2048(91)85014-K CrossRef
55.
Zurück zum Zitat Polack F, Silly M, Chauvet C, et al (2010) TEMPO: a new insertion device beamline at SOLEIL for time resolved photoelectron spectroscopy experiments on solids and interfaces. AIP Conference Proceedings pp 185–188 Polack F, Silly M, Chauvet C, et al (2010) TEMPO: a new insertion device beamline at SOLEIL for time resolved photoelectron spectroscopy experiments on solids and interfaces. AIP Conference Proceedings pp 185–188
57.
Zurück zum Zitat Haynes WM (2011) CRC handbook of chemistry and physics, 92nd edn. CRC Press, Boca Raton Haynes WM (2011) CRC handbook of chemistry and physics, 92nd edn. CRC Press, Boca Raton
58.
Zurück zum Zitat Briggs D, Beamson G (1992) Primary and secondary oxygen-induced C1s binding energy shifts in x-ray photoelectron spectroscopy of polymers. Anal Chem 64:1729–1736. doi:10.1021/ac00039a018 CrossRef Briggs D, Beamson G (1992) Primary and secondary oxygen-induced C1s binding energy shifts in x-ray photoelectron spectroscopy of polymers. Anal Chem 64:1729–1736. doi:10.​1021/​ac00039a018 CrossRef
60.
Zurück zum Zitat Carniato S, Gallet J-J, Rochet F et al (2007) Characterization of hydroxyl groups on water-reacted Si(001)-2 × 1 using synchrotron radiation O1s core-level spectroscopies and core-excited state density-functional calculations. Phys Rev B 76:085321. doi:10.1103/PhysRevB.76.085321 CrossRef Carniato S, Gallet J-J, Rochet F et al (2007) Characterization of hydroxyl groups on water-reacted Si(001)-2 × 1 using synchrotron radiation O1s core-level spectroscopies and core-excited state density-functional calculations. Phys Rev B 76:085321. doi:10.​1103/​PhysRevB.​76.​085321 CrossRef
64.
Zurück zum Zitat Markovich G, Cheshnovsky O, Kaldor U (1993) Charge transfer excitations in the photoelectron spectrum of Cl–NH3: experiment and calculation. J Chem Phys 99:6201. doi:10.1063/1.465913 CrossRef Markovich G, Cheshnovsky O, Kaldor U (1993) Charge transfer excitations in the photoelectron spectrum of Cl–NH3: experiment and calculation. J Chem Phys 99:6201. doi:10.​1063/​1.​465913 CrossRef
65.
Zurück zum Zitat Kurahashi N, Karashima S, Tang Y et al (2014) Photoelectron spectroscopy of aqueous solutions: streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X-. J Chem Phys 140:174506. doi:10.1063/1.4871877 CrossRef Kurahashi N, Karashima S, Tang Y et al (2014) Photoelectron spectroscopy of aqueous solutions: streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X-. J Chem Phys 140:174506. doi:10.​1063/​1.​4871877 CrossRef
66.
Zurück zum Zitat Fadley CS (1978) Basic concepts of X-ray photoelectron spectroscopy. In: Brundle CR, Baker AD (eds) Electron spectroscopy: theory, techniques and applications, vol 2. Academic Press, London, pp 14–15 Fadley CS (1978) Basic concepts of X-ray photoelectron spectroscopy. In: Brundle CR, Baker AD (eds) Electron spectroscopy: theory, techniques and applications, vol 2. Academic Press, London, pp 14–15
68.
72.
Zurück zum Zitat Ni Y, Gruenbaum SM, Skinner JL (2013) Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy. Proc Natl Acad Sci USA 110:1992–1998. doi:10.1073/pnas.1222017110 CrossRef Ni Y, Gruenbaum SM, Skinner JL (2013) Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy. Proc Natl Acad Sci USA 110:1992–1998. doi:10.​1073/​pnas.​1222017110 CrossRef
75.
Zurück zum Zitat Reutt JE, Wang LS, Lee YT, Shirley DA (1986) Molecular beam photoelectron spectroscopy and femtosecond intramolecular dynamics of H2O+ and D2O+. J Chem Phys 85:6928. doi:10.1063/1.451379 CrossRef Reutt JE, Wang LS, Lee YT, Shirley DA (1986) Molecular beam photoelectron spectroscopy and femtosecond intramolecular dynamics of H2O+ and D2O+. J Chem Phys 85:6928. doi:10.​1063/​1.​451379 CrossRef
78.
Zurück zum Zitat Allen AO (1961) The radiation chemistry of water and aqueous solutions. D. Van Nostrand Company, Princeton Allen AO (1961) The radiation chemistry of water and aqueous solutions. D. Van Nostrand Company, Princeton
79.
Zurück zum Zitat Mesu JG, Beale AM, de Groot FMF, Weckhuysen BM (2006) Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy. J Phys Chem B 110:17671–17677. doi:10.1021/jp062618m CrossRef Mesu JG, Beale AM, de Groot FMF, Weckhuysen BM (2006) Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy. J Phys Chem B 110:17671–17677. doi:10.​1021/​jp062618m CrossRef
81.
Zurück zum Zitat Tissot H, Gallet J, Bournel F, Naitabdi A (2014) Silicon monomer formation and surface patterning of Si (001) −2 × 1 following TEOS dissociative adsorption at room temperature. J Phys Chem C 118(4):1887–1893CrossRef Tissot H, Gallet J, Bournel F, Naitabdi A (2014) Silicon monomer formation and surface patterning of Si (001) −2 × 1 following TEOS dissociative adsorption at room temperature. J Phys Chem C 118(4):1887–1893CrossRef
Metadaten
Titel
The Electronic Structure of Saturated NaCl and NaI Solutions in Contact with a Gold Substrate
verfasst von
Héloïse Tissot
Jean-Jacques Gallet
Fabrice Bournel
Giorgia Olivieri
Mathieu G. Silly
Fausto Sirotti
Anthony Boucly
François Rochet
Publikationsdatum
30.12.2015
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 5-7/2016
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-015-0530-6

Weitere Artikel der Ausgabe 5-7/2016

Topics in Catalysis 5-7/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.