Skip to main content

2015 | OriginalPaper | Buchkapitel

16. The Energy Conservation Potential of Using Phase-Change Materials as Thermal Mass Material for Air Source Heat Pump-Driven Underfloor Heating System in a Building

verfasst von : Ming Jun Huang, Neil Hewitt

Erschienen in: Progress in Clean Energy, Volume 2

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Improved energy efficiency in buildings is the key element to reduce the greenhouse gas emissions while contributing to energy security. Underfloor heating is a more efficient and economical method for home heating with improved thermal comfort than any other heating methods. Due to the low-temperature heating source requirement the underfloor heating is widely accepted as the most efficient form of heating. Heat pumps are energy-efficient equipment to provide low-temperature heat source which is suitable for underfloor heating applications. Phase-change materials (PCMs) are attractive for use in thermal energy store for underfloor heating applications due to their high-energy storage density over a small temperature range, therefore allowing the air source heat pump to operate during winter warmer afternoon ambient air conditions or in an electricity tariff management mode. A numerical simulation model has been validated and used to analyse the thermal performance of PCM-layered underfloor heating under different heating modes. Different layouts of the underfloor heating pipes with PCMs as floor mass material were analysed for realistic diurnal temperature boundary conditions and temperature distribution was predicted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lin K, Zhang Y, Xu X, Di H, Yang R, Qin P (2005) Experimental study of under-floor electric heating system with shape-stabilized PCM plates. Energy Build 37:215–220CrossRef Lin K, Zhang Y, Xu X, Di H, Yang R, Qin P (2005) Experimental study of under-floor electric heating system with shape-stabilized PCM plates. Energy Build 37:215–220CrossRef
2.
Zurück zum Zitat Song D, Kim T, Song S, Hwang S, Leigh SB (2008) Performance evaluation of a radiant floor cooling system integrated with dehumidified ventilation. Appl Therm Eng 28:1299–1311CrossRef Song D, Kim T, Song S, Hwang S, Leigh SB (2008) Performance evaluation of a radiant floor cooling system integrated with dehumidified ventilation. Appl Therm Eng 28:1299–1311CrossRef
3.
Zurück zum Zitat Niu JL, Zhang LZ, Zuo HG (2002) Energy savings potential of chilled ceiling combined with desiccant cooling in hot and humid climates. Energy Build 34:487–495CrossRef Niu JL, Zhang LZ, Zuo HG (2002) Energy savings potential of chilled ceiling combined with desiccant cooling in hot and humid climates. Energy Build 34:487–495CrossRef
4.
Zurück zum Zitat Olesen BW (1997) Possibilities and limitations of radiant floor cooling. ASHRAE Trans 103(1):42–48 Olesen BW (1997) Possibilities and limitations of radiant floor cooling. ASHRAE Trans 103(1):42–48
5.
Zurück zum Zitat Xing J, Xiaosong Z, Yajun L, Rongquan C (2010) Numerical simulation of radiant floor cooling system: The effects of thermal resistance of pipe and water velocity on the performance. J Build Environ 45:2545–2552CrossRef Xing J, Xiaosong Z, Yajun L, Rongquan C (2010) Numerical simulation of radiant floor cooling system: The effects of thermal resistance of pipe and water velocity on the performance. J Build Environ 45:2545–2552CrossRef
6.
Zurück zum Zitat Farid M, Chen X (1999) Domestic electrical space heating with heat storage, Proceedings of the Institution of Mechanical Engineers Part A. J Power Energy 213:83–92CrossRef Farid M, Chen X (1999) Domestic electrical space heating with heat storage, Proceedings of the Institution of Mechanical Engineers Part A. J Power Energy 213:83–92CrossRef
7.
Zurück zum Zitat Athienitis AK, Chen TY (1993) Experimental and theoretical investigation of floor heating with thermal storage. ASHRAE Trans 99(1):1049–1057 Athienitis AK, Chen TY (1993) Experimental and theoretical investigation of floor heating with thermal storage. ASHRAE Trans 99(1):1049–1057
8.
Zurück zum Zitat De Monte F (2000) Transient heat conduction in a one-dimensional composite slab. A ‘natural’ analytic approach. Int J Heat Mass Transf 43(19):3607–3619CrossRefMATH De Monte F (2000) Transient heat conduction in a one-dimensional composite slab. A ‘natural’ analytic approach. Int J Heat Mass Transf 43(19):3607–3619CrossRefMATH
9.
Zurück zum Zitat Lu X, Tervola P (2005) Transient heat conduction in the composite slab-analytical method. J Phys A: Mathematical General 38:81–96MathSciNetCrossRefMATH Lu X, Tervola P (2005) Transient heat conduction in the composite slab-analytical method. J Phys A: Mathematical General 38:81–96MathSciNetCrossRefMATH
10.
Zurück zum Zitat Zhang L, Liu XH, Jiang Y (2012) Simplified calculation for cooling/heating capacity, surface temperature distribution of radiant floor. Energy Build 55:397–404CrossRef Zhang L, Liu XH, Jiang Y (2012) Simplified calculation for cooling/heating capacity, surface temperature distribution of radiant floor. Energy Build 55:397–404CrossRef
11.
Zurück zum Zitat Tung-Chai L, Chi-Sun P (2013) Use of phase change materials for thermal energy storage in concrete: An overview. J Construct Build Mater 46:55–62CrossRef Tung-Chai L, Chi-Sun P (2013) Use of phase change materials for thermal energy storage in concrete: An overview. J Construct Build Mater 46:55–62CrossRef
12.
Zurück zum Zitat Cabeza LF, Mehling H, Hiebler S, Ziegler F (2002) Heat transfer enhancement in water when used as PCM in thermal energy storage. Appl Therm Eng 22:1141–1151CrossRef Cabeza LF, Mehling H, Hiebler S, Ziegler F (2002) Heat transfer enhancement in water when used as PCM in thermal energy storage. Appl Therm Eng 22:1141–1151CrossRef
13.
Zurück zum Zitat Cui Y, Liu C, Hu S, Yu X (2011) The experimental exploration of carbon nanofiber ad carbon nanotube additives on thermal behaviour of phase change materials. Sol Energy Mater Sol Cells 95:1208–1212CrossRef Cui Y, Liu C, Hu S, Yu X (2011) The experimental exploration of carbon nanofiber ad carbon nanotube additives on thermal behaviour of phase change materials. Sol Energy Mater Sol Cells 95:1208–1212CrossRef
14.
Zurück zum Zitat Huang MJ, Eames PC, Hewitt NJ (2006) The application of a validated numerical model to predict the energy conservation potential of using phase change materials in the fabric of a building. Sol Energy Mater Sol Cells 90(13):1951–1960CrossRef Huang MJ, Eames PC, Hewitt NJ (2006) The application of a validated numerical model to predict the energy conservation potential of using phase change materials in the fabric of a building. Sol Energy Mater Sol Cells 90(13):1951–1960CrossRef
15.
Zurück zum Zitat Sumin K, Lawrence DT (2009) High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells 93(1):136–142CrossRef Sumin K, Lawrence DT (2009) High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells 93(1):136–142CrossRef
16.
Zurück zum Zitat Jeon J, Jeong SG, Lee JH, Seo J, Kim S (2012) High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system. Sol Energy Mater Sol Cells 101:51–56CrossRef Jeon J, Jeong SG, Lee JH, Seo J, Kim S (2012) High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system. Sol Energy Mater Sol Cells 101:51–56CrossRef
17.
Zurück zum Zitat Karim L, Barbeon F, Gegout P, Bontemps A, Royon L (2014) New phase-change material components for thermal management of the light weight envelope of buildings. Energy Build 68(Part B):703–706CrossRef Karim L, Barbeon F, Gegout P, Bontemps A, Royon L (2014) New phase-change material components for thermal management of the light weight envelope of buildings. Energy Build 68(Part B):703–706CrossRef
18.
Zurück zum Zitat Dengjia W, Yanfeng L, Yingying W, Jiaping L (2014) Numerical and experimental analysis of floor heat storage and release during an intermittent in-slab floor heating process. Appl Therm Eng 62:398–406CrossRef Dengjia W, Yanfeng L, Yingying W, Jiaping L (2014) Numerical and experimental analysis of floor heat storage and release during an intermittent in-slab floor heating process. Appl Therm Eng 62:398–406CrossRef
Metadaten
Titel
The Energy Conservation Potential of Using Phase-Change Materials as Thermal Mass Material for Air Source Heat Pump-Driven Underfloor Heating System in a Building
verfasst von
Ming Jun Huang
Neil Hewitt
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-17031-2_16