Skip to main content

2013 | OriginalPaper | Buchkapitel

10. The Evans Function for nth-Order Operators on the Real Line

verfasst von : Todd Kapitula, Keith Promislow

Erschienen in: Spectral and Dynamical Stability of Nonlinear Waves

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The primary goal of this chapter is the construction of the Evans function for eigenvalue problems associated with nth-order, exponentially asymptotic linear operators acting on L2(R). The construction, through the Jost solutions, is distinguished from the construction for second-order operators by the fact that the matrix eigenvalues and associated eigenvectors for the nth-order problem may not be analytic in the natural domain of the Evans function. Moreover, while it is relatively easy to determine the essential spectrum for these problems, the matrix eigenvalues and the absolute spectrum do not generally have an explicit representation. We sidestep these issues via an analytic extension of the stable and unstable spaces of the asymptotic matrix which leads to the construction of Jost matrices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
[9]
Zurück zum Zitat J. Alexander and C.K.R.T. Jones. Existence and stability of asymptotically oscillatory triple pulses. Z. Angew. Math. Phys., 44:189–200, 1993.MathSciNetMATHCrossRef J. Alexander and C.K.R.T. Jones. Existence and stability of asymptotically oscillatory triple pulses. Z. Angew. Math. Phys., 44:189–200, 1993.MathSciNetMATHCrossRef
[10]
Zurück zum Zitat J. Alexander and C.K.R.T. Jones. Existence and stability of asymptotically oscillatory double pulses. J. Reine Angew. Math., 446:49–79, 1994.MathSciNetMATH J. Alexander and C.K.R.T. Jones. Existence and stability of asymptotically oscillatory double pulses. J. Reine Angew. Math., 446:49–79, 1994.MathSciNetMATH
[11]
Zurück zum Zitat J. Alexander, R. Gardner, and C.K.R.T. Jones. A topological invariant arising in the stability of travelling waves. J. Reine Angew. Math., 410: 167–212, 1990.MathSciNetMATH J. Alexander, R. Gardner, and C.K.R.T. Jones. A topological invariant arising in the stability of travelling waves. J. Reine Angew. Math., 410: 167–212, 1990.MathSciNetMATH
[12]
Zurück zum Zitat J. Alexander, M. Grillakis, C.K.R.T. Jones, and B. Sandstede. Stability of pulses on optical fibers with phase-sensitive amplifiers. Z. Angew. Math. Phys., 48(2):175–192, 1997.MathSciNetMATHCrossRef J. Alexander, M. Grillakis, C.K.R.T. Jones, and B. Sandstede. Stability of pulses on optical fibers with phase-sensitive amplifiers. Z. Angew. Math. Phys., 48(2):175–192, 1997.MathSciNetMATHCrossRef
[16]
Zurück zum Zitat N. Aparicio, S. Malham, and M. Oliver. Numerical evaluation of the Evans function by Magnus integration. BIT, 45:219–258, 2005.MathSciNetMATHCrossRef N. Aparicio, S. Malham, and M. Oliver. Numerical evaluation of the Evans function by Magnus integration. BIT, 45:219–258, 2005.MathSciNetMATHCrossRef
[19]
Zurück zum Zitat J. Arnold. Stability theory for periodic pulse train solutions of the nonlinear Schrödinger equation. IMA J. Appl. Math., 52:123–140, 1994.MathSciNetMATHCrossRef J. Arnold. Stability theory for periodic pulse train solutions of the nonlinear Schrödinger equation. IMA J. Appl. Math., 52:123–140, 1994.MathSciNetMATHCrossRef
[31]
Zurück zum Zitat S. Benzoni-Gavage, D. Serre, and K. Zumbrun. Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal., 32(5):929–962, 2001.MathSciNetMATHCrossRef S. Benzoni-Gavage, D. Serre, and K. Zumbrun. Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal., 32(5):929–962, 2001.MathSciNetMATHCrossRef
[69]
Zurück zum Zitat B. Deconinck, D. Pelinovsky, and J. Carter. Transverse instabilities of deep-water solitary waves. Proc. Royal Soc. A, 462:2039–2061, 2006.MathSciNetMATHCrossRef B. Deconinck, D. Pelinovsky, and J. Carter. Transverse instabilities of deep-water solitary waves. Proc. Royal Soc. A, 462:2039–2061, 2006.MathSciNetMATHCrossRef
[71]
Zurück zum Zitat A. Doelman, R. Gardner, and T. Kaper. Stability analysis of singular patterns in the 1-D Gray–Scott model I: a matched asymptotics approach. Physica D, 122(1–4):1–36, 1998.MathSciNetMATHCrossRef A. Doelman, R. Gardner, and T. Kaper. Stability analysis of singular patterns in the 1-D Gray–Scott model I: a matched asymptotics approach. Physica D, 122(1–4):1–36, 1998.MathSciNetMATHCrossRef
[72]
Zurück zum Zitat A. Doelman, R. Gardner, and T. Kaper. A stability index analysis of the 1-D Gray–Scott model. Memoirs AMS, 155(737), 2002. A. Doelman, R. Gardner, and T. Kaper. A stability index analysis of the 1-D Gray–Scott model. Memoirs AMS, 155(737), 2002.
[73]
Zurück zum Zitat A. Doelman, T. Kaper, and K. Promislow. Nonlinear asymptotic stability of the semi-strong pulse dynamics in a regularized Gierer–Meinhardt model. SIAM J. Math. Anal., 38(6):1760–1787, 2007.MathSciNetMATHCrossRef A. Doelman, T. Kaper, and K. Promislow. Nonlinear asymptotic stability of the semi-strong pulse dynamics in a regularized Gierer–Meinhardt model. SIAM J. Math. Anal., 38(6):1760–1787, 2007.MathSciNetMATHCrossRef
[74]
Zurück zum Zitat P. Drazin and R. Johnson. Solitons: An Introduction. Cambridge University Press, Cambridge, 1989.MATHCrossRef P. Drazin and R. Johnson. Solitons: An Introduction. Cambridge University Press, Cambridge, 1989.MATHCrossRef
[100]
Zurück zum Zitat F. Gesztesy, Y. Laushkin, and K. Makarov. Evans functions, Jost functions, and Fredholm determinants. Arch. Rat. Mech. Anal., 186:361–421, 2007.MATHCrossRef F. Gesztesy, Y. Laushkin, and K. Makarov. Evans functions, Jost functions, and Fredholm determinants. Arch. Rat. Mech. Anal., 186:361–421, 2007.MATHCrossRef
[101]
Zurück zum Zitat F. Gesztesy, Y. Latushkin, and K. Zumbrun. Derivatives of (modified) Fredholm determinants and stability of standing and traveling waves. J. Math. Pures Appl., 9(2):160–200, 2008.MathSciNet F. Gesztesy, Y. Latushkin, and K. Zumbrun. Derivatives of (modified) Fredholm determinants and stability of standing and traveling waves. J. Math. Pures Appl., 9(2):160–200, 2008.MathSciNet
[119]
Zurück zum Zitat J. Humpherys and K. Zumbrun. Spectral stability of small-amplitude shock profiles for dissipative symmetric hyperbolic–parabolic systems. Z. Angew. Math. Phys., 53(1):20–34, 2002.MathSciNetMATHCrossRef J. Humpherys and K. Zumbrun. Spectral stability of small-amplitude shock profiles for dissipative symmetric hyperbolic–parabolic systems. Z. Angew. Math. Phys., 53(1):20–34, 2002.MathSciNetMATHCrossRef
[120]
Zurück zum Zitat J. Humpherys and K. Zumbrun. An efficient shooting algorithm for Evans function calculations in large systems. Physica D, 220(2):116–126, 2006.MathSciNetMATHCrossRef J. Humpherys and K. Zumbrun. An efficient shooting algorithm for Evans function calculations in large systems. Physica D, 220(2):116–126, 2006.MathSciNetMATHCrossRef
[121]
Zurück zum Zitat J. Humpherys and K. Zumbrun. Efficient numerical stability analysis of detonation waves in ZND. Quart. Appl. Math., 70(4):685–703, 2012.MATHCrossRef J. Humpherys and K. Zumbrun. Efficient numerical stability analysis of detonation waves in ZND. Quart. Appl. Math., 70(4):685–703, 2012.MATHCrossRef
[122]
Zurück zum Zitat J. Humpherys, B. Sandstede, and K. Zumbrun. Efficient computation of analytic bases in Evans function analysis of large systems. Numer. Math., 103(4):631–642, 2006.MathSciNetMATHCrossRef J. Humpherys, B. Sandstede, and K. Zumbrun. Efficient computation of analytic bases in Evans function analysis of large systems. Numer. Math., 103(4):631–642, 2006.MathSciNetMATHCrossRef
[129]
Zurück zum Zitat T. Ivey and S. Lafortune. Spectral stability analysis for periodic traveling wave solutions of NLS and CGL perturbations. Physica D, 237:1750–1772, 2008.MathSciNetMATHCrossRef T. Ivey and S. Lafortune. Spectral stability analysis for periodic traveling wave solutions of NLS and CGL perturbations. Physica D, 237:1750–1772, 2008.MathSciNetMATHCrossRef
[142]
Zurück zum Zitat T. Kapitula. Existence and stability of singular heteroclinic orbits for the Ginzburg–Landau equation. Nonlinearity, 9(3):669–686, 1996.MathSciNetMATHCrossRef T. Kapitula. Existence and stability of singular heteroclinic orbits for the Ginzburg–Landau equation. Nonlinearity, 9(3):669–686, 1996.MathSciNetMATHCrossRef
[149]
Zurück zum Zitat T. Kapitula and J. Rubin. Existence and stability of standing hole solutions to complex Ginzburg–Landau equations. Nonlinearity, 13(1):77–112, 2000.MathSciNetMATHCrossRef T. Kapitula and J. Rubin. Existence and stability of standing hole solutions to complex Ginzburg–Landau equations. Nonlinearity, 13(1):77–112, 2000.MathSciNetMATHCrossRef
[153]
Zurück zum Zitat T. Kapitula and B. Sandstede. Edge bifurcations for near-integrable systems via Evans function techniques. SIAM J. Math. Anal., 33(5):1117–1143, 2002.MathSciNetMATHCrossRef T. Kapitula and B. Sandstede. Edge bifurcations for near-integrable systems via Evans function techniques. SIAM J. Math. Anal., 33(5):1117–1143, 2002.MathSciNetMATHCrossRef
[154]
Zurück zum Zitat T. Kapitula and B. Sandstede. Eigenvalues and resonances using the Evans function. Disc. Cont. Dyn. Sys., 10(4):857–869, 2004.MathSciNetMATHCrossRef T. Kapitula and B. Sandstede. Eigenvalues and resonances using the Evans function. Disc. Cont. Dyn. Sys., 10(4):857–869, 2004.MathSciNetMATHCrossRef
[158]
Zurück zum Zitat T. Kapitula, J. N. Kutz, and B. Sandstede. The Evans function for nonlocal equations. Indiana U. Math. J., 53(4):1095–1126, 2004b.MathSciNetMATHCrossRef T. Kapitula, J. N. Kutz, and B. Sandstede. The Evans function for nonlocal equations. Indiana U. Math. J., 53(4):1095–1126, 2004b.MathSciNetMATHCrossRef
[162]
Zurück zum Zitat T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1980.MATH T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1980.MATH
[164]
[183]
Zurück zum Zitat Y. Latushkin and A. Sukhtavey. The algebraic multiplicity of eigenvalues and the Evans function revisited. Math. Model. Nat. Phenom., 5:269–292, 2010.MathSciNetMATHCrossRef Y. Latushkin and A. Sukhtavey. The algebraic multiplicity of eigenvalues and the Evans function revisited. Math. Model. Nat. Phenom., 5:269–292, 2010.MathSciNetMATHCrossRef
[184]
Zurück zum Zitat Y. Latushkin and A. Sukhtayev. The Evans function and the Weyl–Titchmarsh function. Disc. Cont. Dyn. Sys. Ser. S, 5:939–970, 2012.MathSciNetMATHCrossRef Y. Latushkin and A. Sukhtayev. The Evans function and the Weyl–Titchmarsh function. Disc. Cont. Dyn. Sys. Ser. S, 5:939–970, 2012.MathSciNetMATHCrossRef
[185]
Zurück zum Zitat Y. Latushkin and Y. Tomilov. Fredholm differential operators with unbounded coefficients. J. Diff. Eq., 208:388–429, 2005.MathSciNetMATHCrossRef Y. Latushkin and Y. Tomilov. Fredholm differential operators with unbounded coefficients. J. Diff. Eq., 208:388–429, 2005.MathSciNetMATHCrossRef
[187]
Zurück zum Zitat Y. Latushkin, A. Pogan, and R. Schnaubelt. Dichotomy and Fredholm properties of evolution equations. J. Operator Theory, 58:387–414, 2007.MathSciNetMATH Y. Latushkin, A. Pogan, and R. Schnaubelt. Dichotomy and Fredholm properties of evolution equations. J. Operator Theory, 58:387–414, 2007.MathSciNetMATH
[189]
Zurück zum Zitat N. Lebedev. Special Functions and Their Applications. Dover, New York, 1972.MATH N. Lebedev. Special Functions and Their Applications. Dover, New York, 1972.MATH
[190]
Zurück zum Zitat V. Ledoux, S. Malham, J. Niesen, and V. Thummler. Computing stability of multi-dimensional travelling waves. SIAM J. Appl. Dyn. Sys., 8(1): 480–507, 2009.MathSciNetMATHCrossRef V. Ledoux, S. Malham, J. Niesen, and V. Thummler. Computing stability of multi-dimensional travelling waves. SIAM J. Appl. Dyn. Sys., 8(1): 480–507, 2009.MathSciNetMATHCrossRef
[191]
[192]
Zurück zum Zitat Y. Li and K. Promislow. Structural stability of non–ground-state traveling waves of coupled nonlinear Schrödinger equations. Physica D, 124(1–3): 137–165, 1998.MathSciNetMATHCrossRef Y. Li and K. Promislow. Structural stability of non–ground-state traveling waves of coupled nonlinear Schrödinger equations. Physica D, 124(1–3): 137–165, 1998.MathSciNetMATHCrossRef
[193]
Zurück zum Zitat Y. Li and K. Promislow. The mechanism of the polarization mode instability in birefringent fiber optics. SIAM J. Math. Anal., 31(6):1351–1373, 2000.MathSciNetMATHCrossRef Y. Li and K. Promislow. The mechanism of the polarization mode instability in birefringent fiber optics. SIAM J. Math. Anal., 31(6):1351–1373, 2000.MathSciNetMATHCrossRef
[201]
Zurück zum Zitat S. Malham and J. Niesen. Evaluating the Evans function: order reduction in numerical methods. Math. Comp., 77:159–179, 2008.MathSciNetMATHCrossRef S. Malham and J. Niesen. Evaluating the Evans function: order reduction in numerical methods. Math. Comp., 77:159–179, 2008.MathSciNetMATHCrossRef
[212]
Zurück zum Zitat M. Oh and B. Sandstede. Evans function for periodic waves on infinite cylindrical domains. J. Diff. Eq., 248(3):544–555, 2010.MathSciNetMATHCrossRef M. Oh and B. Sandstede. Evans function for periodic waves on infinite cylindrical domains. J. Diff. Eq., 248(3):544–555, 2010.MathSciNetMATHCrossRef
[213]
Zurück zum Zitat M. Oh and K. Zumbrun. Low-frequency stability analysis of periodic traveling-wave solutions of viscous conservation laws in several dimensions. J. Anal. Appl., 25(1):1–21, 2006.MathSciNetMATH M. Oh and K. Zumbrun. Low-frequency stability analysis of periodic traveling-wave solutions of viscous conservation laws in several dimensions. J. Anal. Appl., 25(1):1–21, 2006.MathSciNetMATH
[220]
Zurück zum Zitat R. Pego and M. Weinstein. Eigenvalues, and instabilities of solitary waves. Phil. Trans. R. Soc. Lond. A, 340:47–94, 1992.MathSciNetMATHCrossRef R. Pego and M. Weinstein. Eigenvalues, and instabilities of solitary waves. Phil. Trans. R. Soc. Lond. A, 340:47–94, 1992.MathSciNetMATHCrossRef
[225]
[235]
Zurück zum Zitat R. Plaza and K. Zumbrun. An Evans function approach to spectral stability of small-amplitude shock profiles. Disc. Cont. Dyn. Syst., 10(4):885–924, 2004.MathSciNetMATHCrossRef R. Plaza and K. Zumbrun. An Evans function approach to spectral stability of small-amplitude shock profiles. Disc. Cont. Dyn. Syst., 10(4):885–924, 2004.MathSciNetMATHCrossRef
[246]
Zurück zum Zitat J. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Disc. Cont. Dyn. Sys. A, 4:925–940, 2004.CrossRef J. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Disc. Cont. Dyn. Sys. A, 4:925–940, 2004.CrossRef
[252]
Zurück zum Zitat B. Sandstede and A. Scheel. Absolute and convective instabilities of waves on unbounded and large bounded domains. Physica D, 145:233–277, 2000a.MathSciNetMATHCrossRef B. Sandstede and A. Scheel. Absolute and convective instabilities of waves on unbounded and large bounded domains. Physica D, 145:233–277, 2000a.MathSciNetMATHCrossRef
[253]
Zurück zum Zitat B. Sandstede and A. Scheel. Gluing unstable fronts and backs together can produce stable pulses. Nonlinearity, 13:1465–1482, 2000b.MathSciNetMATHCrossRef B. Sandstede and A. Scheel. Gluing unstable fronts and backs together can produce stable pulses. Nonlinearity, 13:1465–1482, 2000b.MathSciNetMATHCrossRef
[254]
Zurück zum Zitat B. Sandstede and A. Scheel. On the stability of travelling waves with large spatial period. J. Diff. Eq., 172:134–188, 2001a.MathSciNetMATHCrossRef B. Sandstede and A. Scheel. On the stability of travelling waves with large spatial period. J. Diff. Eq., 172:134–188, 2001a.MathSciNetMATHCrossRef
[256]
Zurück zum Zitat B. Sandstede and A. Scheel. Evans function and blow-up methods in critical eigenvalue problems. Disc. Cont. Dyn. Sys., 10:941–964, 2004.MathSciNetMATHCrossRef B. Sandstede and A. Scheel. Evans function and blow-up methods in critical eigenvalue problems. Disc. Cont. Dyn. Sys., 10:941–964, 2004.MathSciNetMATHCrossRef
[258]
Zurück zum Zitat B. Sandstede, J. Alexander, and C.K.R.T. Jones. Existence and stability of n-pulses on optical fibers with phase-sensitive amplifiers. Physica D, 106(1&2): 167–206, 1997.MathSciNetMATHCrossRef B. Sandstede, J. Alexander, and C.K.R.T. Jones. Existence and stability of n-pulses on optical fibers with phase-sensitive amplifiers. Physica D, 106(1&2): 167–206, 1997.MathSciNetMATHCrossRef
[271]
[285]
Zurück zum Zitat A. Yew. Stability analysis of multipulses in nonlinearly coupled Schrödinger equations. Indiana U. Math. J., 49(3):1079–1124, 2000.MathSciNetMATHCrossRef A. Yew. Stability analysis of multipulses in nonlinearly coupled Schrödinger equations. Indiana U. Math. J., 49(3):1079–1124, 2000.MathSciNetMATHCrossRef
[286]
Zurück zum Zitat A. Yew, B. Sandstede, and C.K.R.T. Jones. Instability of multiple pulses in coupled nonlinear Schrödinger equations. Phys. Rev. E, 61(5):5886–5892, 2000.MathSciNetCrossRef A. Yew, B. Sandstede, and C.K.R.T. Jones. Instability of multiple pulses in coupled nonlinear Schrödinger equations. Phys. Rev. E, 61(5):5886–5892, 2000.MathSciNetCrossRef
[287]
Zurück zum Zitat L. Zhang. On stability of traveling wave solutions in synaptically coupled neuronal networks. Diff. Int. Eq., 16:513–536, 2003.MATH L. Zhang. On stability of traveling wave solutions in synaptically coupled neuronal networks. Diff. Int. Eq., 16:513–536, 2003.MATH
[288]
Zurück zum Zitat L. Zhang. Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks. J. Diff. Eq., 197:162–196, 2004.MATHCrossRef L. Zhang. Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks. J. Diff. Eq., 197:162–196, 2004.MATHCrossRef
[289]
Zurück zum Zitat L. Zhang. Evans functions and bifurcations of standing wave solutions in delayed synaptically coupled neuronal networks. J. Appl. Anal. Comp., 2: 213–240, 2012. L. Zhang. Evans functions and bifurcations of standing wave solutions in delayed synaptically coupled neuronal networks. J. Appl. Anal. Comp., 2: 213–240, 2012.
[291]
Zurück zum Zitat K. Zumbrun. Numerical error analysis for Evans function computations: a numerical gap lemma, centerd-coordinate methods, and the unreasonable effectiveness of continuous orthogonalization. arXiv:0904.0268v2, 2009. K. Zumbrun. Numerical error analysis for Evans function computations: a numerical gap lemma, centerd-coordinate methods, and the unreasonable effectiveness of continuous orthogonalization. arXiv:0904.0268v2, 2009.
[294]
Metadaten
Titel
The Evans Function for nth-Order Operators on the Real Line
verfasst von
Todd Kapitula
Keith Promislow
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6995-7_10