Skip to main content
Erschienen in:

28.11.2016 | Original Paper

The evolution of microstructure and microhardness in a biomedical Ti–35Nb–7Zr–5Ta alloy

verfasst von: M. Hendrickson, S. A. Mantri, Y. Ren, T. Alam, V. Soni, B. Gwalani, M. Styles, D. Choudhuri, R. Banerjee

Erschienen in: Journal of Materials Science | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

β-Ti alloys are promising candidates for biomedical applications due to their high strength, high corrosion and wear resistance, and low elastic modulus. This study focuses on phase evolution in a low modulus Ti–35Nb–7Zr–5Ta (TNZT) alloy, systematically examined via isochronal and isothermal annealing, and its influence on microhardness. The observations indicate that the highest microhardness value was achieved at an aging temperature of 400 °C. The microstructural evolution at this temperature was investigated via systematic isothermal annealing treatments, and the results indicate a progressive transformation from β + ω + O’ (solution treated and quenched) to β + ω + α (after isothermal annealing at 400 °C/6 h), with the dissolution of the metastable orthorhombic O’ phase and the formation of the stable α phase. The maximum hardness corresponded to a highly refined mixture of co-existing ω and α phases after prolonged annealing for 48 h at 400 °C. The coexistence of both ω and α phases after such prolonged annealing indicates that at 400 °C, ω is in metastable equilibrium, despite the concurrent precipitation of the equilibrium α phase.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Long MJ, Rack HJ (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19:1621–1639CrossRef Long MJ, Rack HJ (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19:1621–1639CrossRef
2.
Zurück zum Zitat Wang K (1996) The use of titanium for medical applications in the USA. Mater Sci Eng A 213:134–137CrossRef Wang K (1996) The use of titanium for medical applications in the USA. Mater Sci Eng A 213:134–137CrossRef
3.
Zurück zum Zitat Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425CrossRef Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425CrossRef
4.
Zurück zum Zitat Rack HJ, Qazi JI (2006) Titanium alloys for biomedical applications. Mater Sci Eng C 26:1269–1277CrossRef Rack HJ, Qazi JI (2006) Titanium alloys for biomedical applications. Mater Sci Eng C 26:1269–1277CrossRef
5.
Zurück zum Zitat Niinomi M (2008) Biologically and mechanically biocompatible titanium alloys. Mater Trans 49(10):2170–2178CrossRef Niinomi M (2008) Biologically and mechanically biocompatible titanium alloys. Mater Trans 49(10):2170–2178CrossRef
6.
Zurück zum Zitat Bombač D, Brojan M, Fajfar P, Kosel F, Turk R (2007) Review of materials in medical applications. RMZ Mater Geoenviron 54(4):471–499 Bombač D, Brojan M, Fajfar P, Kosel F, Turk R (2007) Review of materials in medical applications. RMZ Mater Geoenviron 54(4):471–499
7.
Zurück zum Zitat Rao S, Uchida T, Tateishi T, Okazaki T, Asao Y (1996) Effect of Ti, Al and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. J Biomed Mater Eng 6(2):79–86 Rao S, Uchida T, Tateishi T, Okazaki T, Asao Y (1996) Effect of Ti, Al and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. J Biomed Mater Eng 6(2):79–86
8.
Zurück zum Zitat Walker PR, LeBlanc J, Sikorska M (1989) Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry 28(9):3911–3915CrossRef Walker PR, LeBlanc J, Sikorska M (1989) Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry 28(9):3911–3915CrossRef
9.
Zurück zum Zitat Borowy KH, Krammer KH (1985) On the properties of a new Titanium alloy (Ti–5Al–2.5Fe) as implant material. Titanium 84, Science and Technology, vol 2. Desche Ges Metallkunde EV, Munich. pp 1381–1386 Borowy KH, Krammer KH (1985) On the properties of a new Titanium alloy (Ti–5Al–2.5Fe) as implant material. Titanium 84, Science and Technology, vol 2. Desche Ges Metallkunde EV, Munich. pp 1381–1386
10.
Zurück zum Zitat Ahmed T, Long M, Silvestri J, Ruiz C, Rack HJ (1996) A new low modulus, biocompatible titanium alloy, In Titanium 95: Science and Technology. The Institute for Materials, Birmingham, UK, pp 1760–1767 Ahmed T, Long M, Silvestri J, Ruiz C, Rack HJ (1996) A new low modulus, biocompatible titanium alloy, In Titanium 95: Science and Technology. The Institute for Materials, Birmingham, UK, pp 1760–1767
11.
Zurück zum Zitat Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Mater Sci Eng A 243:244–249CrossRef Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Mater Sci Eng A 243:244–249CrossRef
12.
Zurück zum Zitat Ferrandini PL, Cardoso FF, Souza SA, Afonso CR, Caram R (2007) Aging response of the Ti–35Nb–7Zr–5Ta and Ti–35Nb–7Ta alloys. J Alloy Compd 433:207–210CrossRef Ferrandini PL, Cardoso FF, Souza SA, Afonso CR, Caram R (2007) Aging response of the Ti–35Nb–7Zr–5Ta and Ti–35Nb–7Ta alloys. J Alloy Compd 433:207–210CrossRef
13.
Zurück zum Zitat Banerjee R, Nag S, Stechschulte J, Fraser HL (2004) Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys. Biomaterials 25:3413–3419CrossRef Banerjee R, Nag S, Stechschulte J, Fraser HL (2004) Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys. Biomaterials 25:3413–3419CrossRef
14.
Zurück zum Zitat Nag S, Banerjee R, Fraser HL (2005) Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Mater Sci Eng C 25:357–362CrossRef Nag S, Banerjee R, Fraser HL (2005) Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Mater Sci Eng C 25:357–362CrossRef
15.
Zurück zum Zitat Nag S, Banerjee R (2012) Laser deposition and deformation behavior of Ti–Nb–Zr–Ta alloys for orthopedic implants. J Mech Behav Biomed Mater 16:21–28CrossRef Nag S, Banerjee R (2012) Laser deposition and deformation behavior of Ti–Nb–Zr–Ta alloys for orthopedic implants. J Mech Behav Biomed Mater 16:21–28CrossRef
16.
Zurück zum Zitat Li SJ, Yang R, Niinomi M, Hao YL, Cui YY, Guo ZX (2005) Phase transformation during aging and resulting mechanical properties of two Ti–Nb–Ta–Zr alloys. Mater Sci Technol 21(6):678–686CrossRef Li SJ, Yang R, Niinomi M, Hao YL, Cui YY, Guo ZX (2005) Phase transformation during aging and resulting mechanical properties of two Ti–Nb–Ta–Zr alloys. Mater Sci Technol 21(6):678–686CrossRef
17.
Zurück zum Zitat Nakai M, Niinomi M, Oneda T (2012) Improvement in fatigue strength of biomedical b-type Ti–Nb–Ta–Zr alloy while maintaining low Young’s modulus through optimizing ω-phase precipitation. Metall Mater Trans A 43a:294CrossRef Nakai M, Niinomi M, Oneda T (2012) Improvement in fatigue strength of biomedical b-type Ti–Nb–Ta–Zr alloy while maintaining low Young’s modulus through optimizing ω-phase precipitation. Metall Mater Trans A 43a:294CrossRef
18.
Zurück zum Zitat Lope ESN, Cremasco A, Afonso CRM, Caram R (2011) Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti–Nb alloys. Mater Charact 62:673–680CrossRef Lope ESN, Cremasco A, Afonso CRM, Caram R (2011) Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti–Nb alloys. Mater Charact 62:673–680CrossRef
19.
Zurück zum Zitat Sakaguchi N, Niinomi M, Akahori T, Takeda J, Toda H (2005) Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys. Mater Sci Eng C 25:363–369CrossRef Sakaguchi N, Niinomi M, Akahori T, Takeda J, Toda H (2005) Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys. Mater Sci Eng C 25:363–369CrossRef
20.
Zurück zum Zitat Gysler A, Lutjering G, Gerold V (1974) Deformation behavior of age hardened Ti-Mo alloys. Acta Metall 22:901–909CrossRef Gysler A, Lutjering G, Gerold V (1974) Deformation behavior of age hardened Ti-Mo alloys. Acta Metall 22:901–909CrossRef
21.
Zurück zum Zitat Williams J, Hickman B, Marcus H (1971) The effect of omega phase on the mechanical properties of titanium alloys. Metall Trans 2:1913 Williams J, Hickman B, Marcus H (1971) The effect of omega phase on the mechanical properties of titanium alloys. Metall Trans 2:1913
22.
Zurück zum Zitat Tane M, Nakano T, Kuramoto S, Hara M, Niinomi M, Takesue N, Yano T, Nakajima H (2011) Low Young’s modulus in Ti–Nb–Ta–Zr–O alloys: cold working and oxygen effects. Acta Mater 59:6975–6988CrossRef Tane M, Nakano T, Kuramoto S, Hara M, Niinomi M, Takesue N, Yano T, Nakajima H (2011) Low Young’s modulus in Ti–Nb–Ta–Zr–O alloys: cold working and oxygen effects. Acta Mater 59:6975–6988CrossRef
24.
Zurück zum Zitat Tane M, Nakano T, Kuramoto S, Niinomi M, Takesue N, Nakajima H (2013) ω Transformation in cold-worked Ti–Nb–Ta–Zr–O alloys with low body-centered cubic phase stability and its correlation with their elastic properties. Acta Mater 61:139–150CrossRef Tane M, Nakano T, Kuramoto S, Niinomi M, Takesue N, Nakajima H (2013) ω Transformation in cold-worked Ti–Nb–Ta–Zr–O alloys with low body-centered cubic phase stability and its correlation with their elastic properties. Acta Mater 61:139–150CrossRef
25.
Zurück zum Zitat Qazi JI, Marquardt TB, Allard LF, Rack HJ (2005) Phase transformations in Ti–35Nb–7Zr–5Ta (0.06–0.68)O alloys. Mater Sci Eng C 25:389–397CrossRef Qazi JI, Marquardt TB, Allard LF, Rack HJ (2005) Phase transformations in Ti–35Nb–7Zr–5Ta (0.06–0.68)O alloys. Mater Sci Eng C 25:389–397CrossRef
26.
Zurück zum Zitat Wei Q, Wang L, Fu Y, Qin J, Lu W, Zhang D (2011) Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy. Mater Des 32:2934–2939CrossRef Wei Q, Wang L, Fu Y, Qin J, Lu W, Zhang D (2011) Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy. Mater Des 32:2934–2939CrossRef
27.
Zurück zum Zitat Nag S, Banerjee R, Srinivasan R, Hwang JY, Harper M, Fraser HL (2009) ω-Assisted nucleation and growth of a precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β-titanium alloy. Acta Mater 57:2136–2147CrossRef Nag S, Banerjee R, Srinivasan R, Hwang JY, Harper M, Fraser HL (2009) ω-Assisted nucleation and growth of a precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β-titanium alloy. Acta Mater 57:2136–2147CrossRef
28.
Zurück zum Zitat Zheng Y, Williams R, Sosa J, Wang Y, Banerjee R, Fraser H (2016) The role of the ω phase on the non-classical precipitation of the α phase in metastable β-titanium alloys. Scr Mater 111:81–84CrossRef Zheng Y, Williams R, Sosa J, Wang Y, Banerjee R, Fraser H (2016) The role of the ω phase on the non-classical precipitation of the α phase in metastable β-titanium alloys. Scr Mater 111:81–84CrossRef
29.
Zurück zum Zitat Zheng Y, Williams R, Wang D, Shi R, Nag S, Kami P, Sosa J, Banerjee R, Wang Y, Fraser H (2016) Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys. Acta Mater 103:850–858, 103 Zheng Y, Williams R, Wang D, Shi R, Nag S, Kami P, Sosa J, Banerjee R, Wang Y, Fraser H (2016) Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys. Acta Mater 103:850–858, 103
30.
Zurück zum Zitat Li T, Kent D, Sha G, Stephenson LT, Ceguerra AV, Ringer SP, Dargusch MS, Cairney JM (2016) New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys. Acta Mater 106:353–366CrossRef Li T, Kent D, Sha G, Stephenson LT, Ceguerra AV, Ringer SP, Dargusch MS, Cairney JM (2016) New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys. Acta Mater 106:353–366CrossRef
31.
Zurück zum Zitat Ohmori Y, Ogo T, Nakai K, Kobayashi S (2001) Effects of ω-phase precipitation on β → α, α″ transformations in a metastable β-titanium alloy. Mater Sci Eng A 312:182–188CrossRef Ohmori Y, Ogo T, Nakai K, Kobayashi S (2001) Effects of ω-phase precipitation on β → α, α″ transformations in a metastable β-titanium alloy. Mater Sci Eng A 312:182–188CrossRef
32.
Zurück zum Zitat Li T, Kent D, Sha G, Dargusch MS, Cairney JM (2015) The mechanism of x-assisted a phase formation in near β-Ti alloys. Scr Mater 104:75–78CrossRef Li T, Kent D, Sha G, Dargusch MS, Cairney JM (2015) The mechanism of x-assisted a phase formation in near β-Ti alloys. Scr Mater 104:75–78CrossRef
33.
Zurück zum Zitat Mantri S, Choudhuri D, Behera A, Cotton J, Kumar N, Banerjee R (2015) Influence of fine-scale alpha precipitation on the mechanical properties of the beta titanium alloy beta-21S. Metall Mater Trans A 46(7):2803–2808CrossRef Mantri S, Choudhuri D, Behera A, Cotton J, Kumar N, Banerjee R (2015) Influence of fine-scale alpha precipitation on the mechanical properties of the beta titanium alloy beta-21S. Metall Mater Trans A 46(7):2803–2808CrossRef
34.
Zurück zum Zitat Hammersley AP (1995) ESRF Internal Report, EXP/AH/95-01, FIT2D V5.18 Reference Manual V1.6 Hammersley AP (1995) ESRF Internal Report, EXP/AH/95-01, FIT2D V5.18 Reference Manual V1.6
35.
Zurück zum Zitat Toby B (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRef Toby B (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRef
36.
Zurück zum Zitat Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRef Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRef
37.
Zurück zum Zitat Cheary RW, Coelho AA, Cline JP (2004) Fundamental parameters line profile fitting in laboratory diffractometers. J Res Nat Inst Stand Technol 109:1–25CrossRef Cheary RW, Coelho AA, Cline JP (2004) Fundamental parameters line profile fitting in laboratory diffractometers. J Res Nat Inst Stand Technol 109:1–25CrossRef
38.
Zurück zum Zitat Chen SL, Daniel S, Zhang F, Chang YA, Yan XY, Xie FY, Schmid-Fetzer R, Oates WA (2002) The PANDAT software package and applications. CALPHAD 26:175–188CrossRef Chen SL, Daniel S, Zhang F, Chang YA, Yan XY, Xie FY, Schmid-Fetzer R, Oates WA (2002) The PANDAT software package and applications. CALPHAD 26:175–188CrossRef
39.
Zurück zum Zitat Banerjee S, Mukhopadhyay P (2010) Phase transformations: examples from titanium and zirconium alloys. Elsevier, Amsterdam Banerjee S, Mukhopadhyay P (2010) Phase transformations: examples from titanium and zirconium alloys. Elsevier, Amsterdam
40.
Zurück zum Zitat Zheng Y, Williams REA, Nag S, Banerjee R, Fraser HL, Banerjee D (2016) The effect of alloy composition on instabilities in the β phase of titanium alloys. Scr Mater 116:49–52CrossRef Zheng Y, Williams REA, Nag S, Banerjee R, Fraser HL, Banerjee D (2016) The effect of alloy composition on instabilities in the β phase of titanium alloys. Scr Mater 116:49–52CrossRef
41.
Zurück zum Zitat Cook HE (1974) A theory of the omega transformation. Acta Metall 22:239–247CrossRef Cook HE (1974) A theory of the omega transformation. Acta Metall 22:239–247CrossRef
42.
Zurück zum Zitat Zheng Y, Banerjee D, Fraser HL (2016) A nano-scale instability in the β phase of dilute Ti–Mo alloys. Scripta Mater 116:131–134CrossRef Zheng Y, Banerjee D, Fraser HL (2016) A nano-scale instability in the β phase of dilute Ti–Mo alloys. Scripta Mater 116:131–134CrossRef
Metadaten
Titel
The evolution of microstructure and microhardness in a biomedical Ti–35Nb–7Zr–5Ta alloy
verfasst von
M. Hendrickson
S. A. Mantri
Y. Ren
T. Alam
V. Soni
B. Gwalani
M. Styles
D. Choudhuri
R. Banerjee
Publikationsdatum
28.11.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0591-3

Weitere Artikel der Ausgabe 6/2017

Journal of Materials Science 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.