Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

1. The Evolution of Optical Transport Networks

verfasst von : Rod C. Alferness

Erschienen in: Springer Handbook of Optical Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

This introductory chapter describes the role of optics in networks, their capabilities, and their scaling limitations (different multiplexing techniques, i. e., (time-division multiplexing), (code-division multiplexing), (frequency-division multiplexing), (space-division multiplexing)). Types of optical networks installed around the globe are summarized, as well as their impact on society, market structure, and future perspectives.
Optical fiber transmission links were first deployed in the mid 1970s to provide \({\mathrm{45}}\,{\mathrm{Mb/s}}\) capacity in metropolitan networks at a time when most traffic was wireline telephone communication. Few would have imagined then, when bandwidth demand on the telephone network was growing only as rapidly as population growth, that this new technology would radically alter business and everyday life by enabling the worldwide Internet. As the Internet grew in popularity and extended to all parts of the world, new devices and transmission technologies were invented and developed to cost-effectively achieve the required higher capacity transmission, and fiber was laid across continents and under the oceans to cover the globe. Thus began a virtuous cycle of higher capacity optical transmission systems and, ultimately, reconfigurable optical networks enabled by new technologies to meet increased demand, which resulted in new applications and services, such as video, which drove ever greater capacity and flexibility demand, which was, again, achieved via new technology innovation at significantly lower costs/capacity.
First-era systems grew the capacity of optical links by increasing the bit rate of information carried on the fiber. The second era, which was achieved cost-effectively by the optical fiber amplifier, increased capacity by multiplexing many wavelengths, each carrying independent information, onto a single fiber. The result was an increase in single fiber transmission equal to the number of wavelength channels and long spans over which all the wavelength channel signals could be periodically boosted with a single optically-powered optical fiber amplifier. The next era took the giant step of moving optics from transmission links only to fully reconfigurable, wavelength-channel-based networks to achieve higher efficiency (and, therefore, capacity), flexibility, and restorability by allotting and managing network capacity at the optical layer level.
This step required cost-effective optical switching components to provide the reconfigurable wavelength add/drop and cross connect functions. Today’s optical networks provide superhighways of information bandwidth of the order 100 wavelength-defined lanes each providing hundreds of \(\mathrm{Gb/s}\) information capacity. These networks provide network optimization to address changing capacity needs under software control via configurable wavelength on-and-off ramps and route switching centers. Without these optical networks, the global internet, cloud computing, and high bandwidth mobile services, including video, would not be possible. This chapter provides a view of the evolution of these optical networks—the market drivers, network architectures, transmission system innovations and enabling devices, and module technologies—which was a result of the efforts of a global community of researchers, developers, and, ultimately, manufacturers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat P.J. Winzer, D. Nielsen: From scaling disparities to integrated parallelism, J. Lightwave Technol. 35(5), 1099–1115 (2017)CrossRef P.J. Winzer, D. Nielsen: From scaling disparities to integrated parallelism, J. Lightwave Technol. 35(5), 1099–1115 (2017)CrossRef
Zurück zum Zitat R.C. Alferness: The evolution of configurable wavelength multiplexed optical networks: a historical perspective, Proc. IEEE 100(5), 1023–1034 (2012)CrossRef R.C. Alferness: The evolution of configurable wavelength multiplexed optical networks: a historical perspective, Proc. IEEE 100(5), 1023–1034 (2012)CrossRef
Zurück zum Zitat I. Jacobs: Lightwave systems development: looking back and ahead, Opt. Photonics News 6(2), 19–23 (1995)CrossRef I. Jacobs: Lightwave systems development: looking back and ahead, Opt. Photonics News 6(2), 19–23 (1995)CrossRef
Zurück zum Zitat P.J. Winzer, D.T. Nielsen, A.R. Chraplyvy: Fiber-optic transmission and networking: the previous 20 years and the next 20 years, Opt. Express 26(18), 24190–24239 (2018)CrossRef P.J. Winzer, D.T. Nielsen, A.R. Chraplyvy: Fiber-optic transmission and networking: the previous 20 years and the next 20 years, Opt. Express 26(18), 24190–24239 (2018)CrossRef
Zurück zum Zitat S.K. Korotky, G. Eisenstein, A. Gnauck, B. Kasper, J. Veselka, R. Alferness, L. Buhl, C. Burrus, T. Huo, L. Stulz, K. Nelson, L. Cohen, R. Dawson, J. Campbell: 4-Gb/s transmission over 117 km of optical fiber using a Ti:LiN60z external modulator, J. Lightwave Technol. 3(5), 1027–1031 (1985)CrossRef S.K. Korotky, G. Eisenstein, A. Gnauck, B. Kasper, J. Veselka, R. Alferness, L. Buhl, C. Burrus, T. Huo, L. Stulz, K. Nelson, L. Cohen, R. Dawson, J. Campbell: 4-Gb/s transmission over 117 km of optical fiber using a Ti:LiN60z external modulator, J. Lightwave Technol. 3(5), 1027–1031 (1985)CrossRef
Zurück zum Zitat J.C. Campbell, A.G. Dentai, W.S. Holden, B.L. Kasper: High-performance avalanche photodiode with separate absorption, “grading”, and multiplication regions, Electron. Lett. 19(20), 818–820 (1983)CrossRef J.C. Campbell, A.G. Dentai, W.S. Holden, B.L. Kasper: High-performance avalanche photodiode with separate absorption, “grading”, and multiplication regions, Electron. Lett. 19(20), 818–820 (1983)CrossRef
Zurück zum Zitat E. Desurvire, J.R. Simpson, P.C. Becker: High-gain erbium-doped traveling wave, Opt. Lett. 12(11), 888–890 (1987)CrossRef E. Desurvire, J.R. Simpson, P.C. Becker: High-gain erbium-doped traveling wave, Opt. Lett. 12(11), 888–890 (1987)CrossRef
Zurück zum Zitat A.R. Chraplyvy, R.W. Trach, K.L. Walker: Optical fiber for wavelength division multiplexing, U.S. Patent 5327516 (1994) A.R. Chraplyvy, R.W. Trach, K.L. Walker: Optical fiber for wavelength division multiplexing, U.S. Patent 5327516 (1994)
Zurück zum Zitat L.A. Coldren: Multi-section tunable laser with differing multi-element mirrors, U.S. Patent 4896325 (1990), filed 1988 L.A. Coldren: Multi-section tunable laser with differing multi-element mirrors, U.S. Patent 4896325 (1990), filed 1988
Zurück zum Zitat V. Jayaraman, Z.M. Chuang, L.A. Coldren: Theory, design and performance of extended tuning range semiconductor lasers with sampled gratings, IEEE J. Quantum Electron. 29(6), 1824–1834 (1993)CrossRef V. Jayaraman, Z.M. Chuang, L.A. Coldren: Theory, design and performance of extended tuning range semiconductor lasers with sampled gratings, IEEE J. Quantum Electron. 29(6), 1824–1834 (1993)CrossRef
Zurück zum Zitat E.J. Murphy, T.O. Murphy, A.F. Andrews, R.W. Irvin, B.H. Lee, P. Peng, G.W. Richards, A. Yorkinks: 16\(\times\)16 strictly non-blocking guided wave optical switching systems, J. Lightwave Syst. Tech. 14, 352–358 (1996)CrossRef E.J. Murphy, T.O. Murphy, A.F. Andrews, R.W. Irvin, B.H. Lee, P. Peng, G.W. Richards, A. Yorkinks: 16\(\times\)16 strictly non-blocking guided wave optical switching systems, J. Lightwave Syst. Tech. 14, 352–358 (1996)CrossRef
Zurück zum Zitat R.C. Alferness: Guided wave devices for optical communications, IEEE J. Quantum Electron. 17(6), 946–959 (1981)CrossRef R.C. Alferness: Guided wave devices for optical communications, IEEE J. Quantum Electron. 17(6), 946–959 (1981)CrossRef
Zurück zum Zitat R.C. Alferness, R.V. Schmidt: Tunable optical waveguide directional coupler filter, Appl. Phys. Lett. 33(2), 161–163 (1978)CrossRef R.C. Alferness, R.V. Schmidt: Tunable optical waveguide directional coupler filter, Appl. Phys. Lett. 33(2), 161–163 (1978)CrossRef
Zurück zum Zitat S.B. Alexander, R.S. Bondurant, D. Byrne, V.W.S. Chan, S.G. Finn, R. Gallager, B.S. Glance, H.A. Haus, P. Humblet, R. Jain, I.P. Kaminow, M. Karol, R.S. Kennedy, A. Kirby, H.Q. Le, A.A.M. Saleh, B.A. Schofield, J.H. Shapiro, N.K. Shankaranarayanan, R.E. Thomas, R.C. Williamson, R.W. Wilson: A precompetitive consortium on wide-band all optical networks, J. Lightwave Technol. 11(5), 714–735 (1993)CrossRef S.B. Alexander, R.S. Bondurant, D. Byrne, V.W.S. Chan, S.G. Finn, R. Gallager, B.S. Glance, H.A. Haus, P. Humblet, R. Jain, I.P. Kaminow, M. Karol, R.S. Kennedy, A. Kirby, H.Q. Le, A.A.M. Saleh, B.A. Schofield, J.H. Shapiro, N.K. Shankaranarayanan, R.E. Thomas, R.C. Williamson, R.W. Wilson: A precompetitive consortium on wide-band all optical networks, J. Lightwave Technol. 11(5), 714–735 (1993)CrossRef
Zurück zum Zitat R.E. Wagner, R.C. Alferness, A.A.M. Saleh, M.S. Goodman: MONET: Multiwavelength optical networking, J. Lightwave Technol. 14(6), 1349–1355 (1996)CrossRef R.E. Wagner, R.C. Alferness, A.A.M. Saleh, M.S. Goodman: MONET: Multiwavelength optical networking, J. Lightwave Technol. 14(6), 1349–1355 (1996)CrossRef
Zurück zum Zitat R.C. Alferness, J.E. Bethold, D. Pomey, R.W. Tkach: MONET: New Jersey demonstration network results. In: Opt. Fiber Conf., February 16, Dallas (1997), paper WI1 R.C. Alferness, J.E. Bethold, D. Pomey, R.W. Tkach: MONET: New Jersey demonstration network results. In: Opt. Fiber Conf., February 16, Dallas (1997), paper WI1
Zurück zum Zitat W.T. Anderson, J. Jackel, G.-K. Chang, H. Dai, W. Xin, M. Goodman, C. Allyn, M. Alvarez, O. Clarke, A. Gottlieb, F. Kleytman, J. Morreale, V. Nichols, A. Tzathas, R. Vora, L. Mercer, H. Dardy, E. Renaud, L. Williard, J. Perreault, R. McFarland, T. Gibbons: The MONET Project – a final report, J. Lightwave Technol. 18(12), 1988–2009 (2000)CrossRef W.T. Anderson, J. Jackel, G.-K. Chang, H. Dai, W. Xin, M. Goodman, C. Allyn, M. Alvarez, O. Clarke, A. Gottlieb, F. Kleytman, J. Morreale, V. Nichols, A. Tzathas, R. Vora, L. Mercer, H. Dardy, E. Renaud, L. Williard, J. Perreault, R. McFarland, T. Gibbons: The MONET Project – a final report, J. Lightwave Technol. 18(12), 1988–2009 (2000)CrossRef
Zurück zum Zitat D.M. Marom, D.T. Neilson, D.S. Greywall, N.R. Basavanhally, P.R. Kolodner, Y.L. Low, F. Pardo, C.A. Bolle, S. Chandrasekhar, L. Buhl, C.R. Giles, S.-H. Oh, C.S. Pai, K. Werder, H.T. Soh, G.R. Bogart, E. Ferry, F.P. Klemens, K. Teffeau, J.F. Miner, S. Rogers, J.E. Bower, R.C. Keller, W. Mansfield: Wavelength selective 1x4 switch for 128 WDM channels at 50 GHz spacing. In: Proc. Optical Fiber Comm. Conf. (OFC) (2002) p. 857 D.M. Marom, D.T. Neilson, D.S. Greywall, N.R. Basavanhally, P.R. Kolodner, Y.L. Low, F. Pardo, C.A. Bolle, S. Chandrasekhar, L. Buhl, C.R. Giles, S.-H. Oh, C.S. Pai, K. Werder, H.T. Soh, G.R. Bogart, E. Ferry, F.P. Klemens, K. Teffeau, J.F. Miner, S. Rogers, J.E. Bower, R.C. Keller, W. Mansfield: Wavelength selective 1x4 switch for 128 WDM channels at 50 GHz spacing. In: Proc. Optical Fiber Comm. Conf. (OFC) (2002) p. 857
Zurück zum Zitat B. Collings: New devices enabling software – defined optical networks, IEEE Commun. Mag. 51(3), 66–71 (2013)CrossRef B. Collings: New devices enabling software – defined optical networks, IEEE Commun. Mag. 51(3), 66–71 (2013)CrossRef
Zurück zum Zitat P.J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A.H. Gnauck, D.A. Fishman, C.R. Doerr, S. Chandrasekhar, L.L. Buhl, T.J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, Y. Painchaud: 100-Gb/s DQPSK transmission: from laboratory experiments to field trials, J. Lightwave Technol. 26, 3388–3402 (2008)CrossRef P.J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A.H. Gnauck, D.A. Fishman, C.R. Doerr, S. Chandrasekhar, L.L. Buhl, T.J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, Y. Painchaud: 100-Gb/s DQPSK transmission: from laboratory experiments to field trials, J. Lightwave Technol. 26, 3388–3402 (2008)CrossRef
Zurück zum Zitat P.J. Winzer: Optical networking beyond WDM, IEEE Photonics J. 4(2), 647–650 (2012)CrossRef P.J. Winzer: Optical networking beyond WDM, IEEE Photonics J. 4(2), 647–650 (2012)CrossRef
Zurück zum Zitat D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, M. Suzuki: 10.16 Peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L Band. In: Proc. Eur. Conf. Opt. Comm. (ECOC) (2017), Th.PDP.A1 D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, M. Suzuki: 10.16 Peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L Band. In: Proc. Eur. Conf. Opt. Comm. (ECOC) (2017), Th.PDP.A1
Zurück zum Zitat S. Randel, R. Ryf, A. Sierra, P.J. Winzer, A.H. Gnauck, C.A. Bolle, R.-J. Essiambre, D.W. Peckham, A. McCurdy, R. Lingle Jr.: 6\(\times\)56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6\(\times\)6 MIMO equalization, Opt. Express 19(17), 16697–16707 (2011)CrossRef S. Randel, R. Ryf, A. Sierra, P.J. Winzer, A.H. Gnauck, C.A. Bolle, R.-J. Essiambre, D.W. Peckham, A. McCurdy, R. Lingle Jr.: 6\(\times\)56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6\(\times\)6 MIMO equalization, Opt. Express 19(17), 16697–16707 (2011)CrossRef
Metadaten
Titel
The Evolution of Optical Transport Networks
verfasst von
Rod C. Alferness
Copyright-Jahr
2020
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-030-16250-4_1

Neuer Inhalt