Skip to main content

2025 | OriginalPaper | Buchkapitel

The Evolving Landscape of TRIZ: A Generative AI-Powered Perspective

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The surge of Generative AI has revolutionized problem-solving, giving rise to innovative tools that unlock unprecedented solutions and cross-industry breakthroughs within the TRIZ methodology. This paper unveils five groundbreaking Generative AI- integrated tools designed to enhance innovation and problem-solving across diverse domains.
1.
Mechanism Oriented Search (MOS): Identifies and analyzes specific problem mechanisms, abstracting them for cross-industry comparison, facilitating the discovery of innovative solutions by applying insights from one field to challenges in another.
 
2.
Resource Innovator for Non-Engineering: Extends TRIZ to non-engineering fields, focusing on identifying and leveraging unique resources within domains like nursing, education, and communication, empowering users to uncover hidden potential.
 
3.
TRIZ FOS-Market Explorer: Facilitates the discovery and analysis of adjacent market opportunities by abstracting the primary function of a product or service and identifying similar functions across various industries, revealing potential new markets.
 
4.
Systematic Idea Generation: Employs detailed resource analysis and TRIZ principles to facilitate innovation within existing systems, categorizing resources and suggesting strategic modifications to components or processes.
 
5.
Function Redirector: Fosters innovation by redirecting functions and resources towards achieving goals in novel ways, deconstructing primary functions into auxiliary functions to stimulate creative problem-solving.
 
These tools collectively harness the power of Generative AI to revolutionize problem-solving and innovation across various sectors, offering structured analysis, imaginative recombination, and cross-disciplinary insights.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Altshuller, G.: Creativity as an Exact Science: The Theory of the Solution of Inventive Problems. Gordon and Breach Science Publishers, London (1984)CrossRef Altshuller, G.: Creativity as an Exact Science: The Theory of the Solution of Inventive Problems. Gordon and Breach Science Publishers, London (1984)CrossRef
Zurück zum Zitat Altshuller, G.: The Innovation Algorithm: TRIZ, systematic innovation, and technical creativity. Technical Innovation Center, Inc. (1997) Altshuller, G.: The Innovation Algorithm: TRIZ, systematic innovation, and technical creativity. Technical Innovation Center, Inc. (1997)
Zurück zum Zitat Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020) Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)
Zurück zum Zitat Cavallucci, D., Rousselot, F.: TRIZ, The Altshullerian approach to solving problems. In: Chakrabarti, A. (eds.) International Conference on Advanced Information Systems Engineering, pp. 86–100. Springer, London (2017) Cavallucci, D., Rousselot, F.: TRIZ, The Altshullerian approach to solving problems. In: Chakrabarti, A. (eds.) International Conference on Advanced Information Systems Engineering, pp. 86–100. Springer, London (2017)
Zurück zum Zitat Ilevbare, I.M., Probert, D., Phaal, R.: A review of TRIZ, and its benefits and challenges in practice. Technovation 33(2–3), 30–37 (2013)CrossRef Ilevbare, I.M., Probert, D., Phaal, R.: A review of TRIZ, and its benefits and challenges in practice. Technovation 33(2–3), 30–37 (2013)CrossRef
Zurück zum Zitat Johnson, S., Lee, M.: Expanding the TRIZ methodology through generative AI: applications in non-engineering fields. J. Innovative Probl. Solving 12(2), 45–62 (2023) Johnson, S., Lee, M.: Expanding the TRIZ methodology through generative AI: applications in non-engineering fields. J. Innovative Probl. Solving 12(2), 45–62 (2023)
Zurück zum Zitat Kumar, A., Zhang, Y.: Challenges and opportunities in integrating AI with TRIZ: a comprehensive review. J. Eng. Tech. Manage. 38, 67–79 (2021) Kumar, A., Zhang, Y.: Challenges and opportunities in integrating AI with TRIZ: a comprehensive review. J. Eng. Tech. Manage. 38, 67–79 (2021)
Zurück zum Zitat Lee, S.: The role of human intuition in AI-driven TRIZ methodologies. Creat. Res. J. 35(1), 23–39 (2023) Lee, S.: The role of human intuition in AI-driven TRIZ methodologies. Creat. Res. J. 35(1), 23–39 (2023)
Zurück zum Zitat Mak, H., Lee, M.: Leveraging GPT models for ideation in TRIZ: A new frontier in innovative problem solving. J. Innov. Manage. 11(3), 77–91 (2022) Mak, H., Lee, M.: Leveraging GPT models for ideation in TRIZ: A new frontier in innovative problem solving. J. Innov. Manage. 11(3), 77–91 (2022)
Zurück zum Zitat Mann, D.L.: TRIZ: The theory of inventive problem solving. Innovation Management, Inc. (2001) Mann, D.L.: TRIZ: The theory of inventive problem solving. Innovation Management, Inc. (2001)
Zurück zum Zitat Park, J., Kim, S., Lee, J.: Automating contradiction identification in TRIZ using AI-driven algorithms. Int. J. Innov. Sci. 13(1), 15–29 (2021) Park, J., Kim, S., Lee, J.: Automating contradiction identification in TRIZ using AI-driven algorithms. Int. J. Innov. Sci. 13(1), 15–29 (2021)
Zurück zum Zitat Mann, D.L.: Hands-On Systematic Innovation. IFR Press, Frankfurt (2007) Mann, D.L.: Hands-On Systematic Innovation. IFR Press, Frankfurt (2007)
Zurück zum Zitat Savransky, S.D.: Engineering of Creativity: Introduction to TRIZ Methodology of Inventive Problem Solving. CRC Press, Boca Raton (2000)CrossRef Savransky, S.D.: Engineering of Creativity: Introduction to TRIZ Methodology of Inventive Problem Solving. CRC Press, Boca Raton (2000)CrossRef
Metadaten
Titel
The Evolving Landscape of TRIZ: A Generative AI-Powered Perspective
verfasst von
Tanasak Pheunghua
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-75919-2_14