Skip to main content
Erschienen in: Theoretical and Computational Fluid Dynamics 3/2020

19.05.2020 | Original Article

The exergy concept and compressible turbulence

verfasst von: Andreas Jocksch

Erschienen in: Theoretical and Computational Fluid Dynamics | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Turbulence models facilitated by Kolmogorov’s theory play an important role for compressible flows. Typically the basis of these models is the power spectrum of the velocity \({\mathbf {u}}\) or of the density-weighted velocity \({\mathbf {w}}\equiv \rho ^{1/3}{\mathbf {u}}\). While for incompressible flow the quantity turbulent kinetic energy characterises turbulent motions, from the thermodynamic point of view, due to fluctuations of the density and the temperature other kinds of energies play a role at the different scales in compressible turbulence. We generalise the power spectrum of the velocity \({\mathbf {u}}\) from incompressible flows to compressible flows by introducing the exergy spectrum as an application of the exergy concept. Furthermore, we discuss the application of the concept of turbulent exergy to turbulence modelling and demonstrate this approach with a direct numerical simulation and a Large-Eddy-Simulation of homogeneous isotropic turbulence. The advantage of turbulence modelling based on turbulent exergy is shown on the example of the Approximate Deconvolution Model (ADM) where, at smallest scales for its newly introduced entropy formulation, more available energy is extracted from the flow, and this occurs in a more physical way than for the classical equation set of the model using the total energy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The literature is not uniform here, the quantity should not be mistaken for Gibbs energy or Helmholtz energy.
 
2
An alternative naming of turbulent exergy could be “turbulent available energy”. We found it more clear for the present contribution to use the term turbulent exergy for consistency with the term turbulent kinetic energy.
 
3
Note that the terms used in this reference do not necessarily correspond to the commonly used ones in thermodynamics.
 
Literatur
1.
Zurück zum Zitat Bataille, F., Zhou, Y., Bertoglio, J.P.: Energy transfer and triadic interactions in compressible turbulence (NASA/CR-97-206249, ICASE Report No. 97-62) (1997) Bataille, F., Zhou, Y., Bertoglio, J.P.: Energy transfer and triadic interactions in compressible turbulence (NASA/CR-97-206249, ICASE Report No. 97-62) (1997)
2.
Zurück zum Zitat Bejan, A.: Entropy Generation Through Heat and Fluid Flow. Wiley, New York (1982) Bejan, A.: Entropy Generation Through Heat and Fluid Flow. Wiley, New York (1982)
3.
Zurück zum Zitat Bejan, A.: Advanced Engineering Thermodynamics, 4th edn. Wiley, New York (2016)CrossRef Bejan, A.: Advanced Engineering Thermodynamics, 4th edn. Wiley, New York (2016)CrossRef
4.
Zurück zum Zitat Bosse, T., Kleiser, L., Meiburg, E.: Small particles in homogeneous turbulence: settling velocity enhancement by two-way coupling. Phys. Fluids 18(2), 027102 (2006)CrossRef Bosse, T., Kleiser, L., Meiburg, E.: Small particles in homogeneous turbulence: settling velocity enhancement by two-way coupling. Phys. Fluids 18(2), 027102 (2006)CrossRef
5.
Zurück zum Zitat Chernyshov, A.A., Karelsky, K.V., Petrosyan, A.S.: Development of large eddy simulation for modeling of decaying compressible magnetohydrodynamic turbulence. Phys. Fluids 19(5), 055106 (2007)MATHCrossRef Chernyshov, A.A., Karelsky, K.V., Petrosyan, A.S.: Development of large eddy simulation for modeling of decaying compressible magnetohydrodynamic turbulence. Phys. Fluids 19(5), 055106 (2007)MATHCrossRef
6.
Zurück zum Zitat Cho, J., Lazarian, A.: Compressible sub-Alfvénic MHD turbulence in low-\(\beta \) plasmas. Phys. Rev. Lett. 88(24), 245001 (2002)CrossRef Cho, J., Lazarian, A.: Compressible sub-Alfvénic MHD turbulence in low-\(\beta \) plasmas. Phys. Rev. Lett. 88(24), 245001 (2002)CrossRef
7.
Zurück zum Zitat Eswaran, V., Pope, S.: An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16(3), 257–278 (1988)MATHCrossRef Eswaran, V., Pope, S.: An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16(3), 257–278 (1988)MATHCrossRef
8.
Zurück zum Zitat Federrath, C.: On the universality of supersonic turbulence. Mon. Not. R. Astron. Soc. 436(2), 1245–1257 (2013)CrossRef Federrath, C.: On the universality of supersonic turbulence. Mon. Not. R. Astron. Soc. 436(2), 1245–1257 (2013)CrossRef
9.
Zurück zum Zitat Fureby, C., Tabor, G., Weller, H., Gosman, A.: A comparative study of subgrid scale models in homogeneous isotropic turbulence. Phys. Fluids 9(5), 1416–1429 (1997)MathSciNetMATHCrossRef Fureby, C., Tabor, G., Weller, H., Gosman, A.: A comparative study of subgrid scale models in homogeneous isotropic turbulence. Phys. Fluids 9(5), 1416–1429 (1997)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer, Berlin (2009)MATHCrossRef Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer, Berlin (2009)MATHCrossRef
11.
Zurück zum Zitat Gatski, T.B.: Modeling compressibility effects on turbulence. In: Métais, O. (ed.) New Tools in Turbulence Modelling, pp. 73–104. Springer, Berlin (1997) CrossRef Gatski, T.B.: Modeling compressibility effects on turbulence. In: Métais, O. (ed.) New Tools in Turbulence Modelling, pp. 73–104. Springer, Berlin (1997) CrossRef
12.
Zurück zum Zitat Grete, P., Vlaykov, D.G., Schmidt, W., Schleicher, D.R.G.: A nonlinear structural subgrid-scale closure for compressible MHD. II. A priori comparison on turbulence simulation data. Phys. Plasmas 23(6), 062317 (2016)CrossRef Grete, P., Vlaykov, D.G., Schmidt, W., Schleicher, D.R.G.: A nonlinear structural subgrid-scale closure for compressible MHD. II. A priori comparison on turbulence simulation data. Phys. Plasmas 23(6), 062317 (2016)CrossRef
13.
Zurück zum Zitat Grete, P., Vlaykov, D.G., Schmidt, W., Schleicher, D.R.G.: Comparative statistics of selected subgrid-scale models in large-eddy simulations of decaying, supersonic magnetohydrodynamic turbulence. Phys. Rev. E 95, 033206 (2017)CrossRef Grete, P., Vlaykov, D.G., Schmidt, W., Schleicher, D.R.G.: Comparative statistics of selected subgrid-scale models in large-eddy simulations of decaying, supersonic magnetohydrodynamic turbulence. Phys. Rev. E 95, 033206 (2017)CrossRef
14.
Zurück zum Zitat Hanifi, A., Schmid, P.J., Henningson, D.S.: Transient growth in compressible boundary layer flow. Phys. Fluids 8(3), 826–837 (1996)MathSciNetMATHCrossRef Hanifi, A., Schmid, P.J., Henningson, D.S.: Transient growth in compressible boundary layer flow. Phys. Fluids 8(3), 826–837 (1996)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Hickel, S., Adams, N.A., Domaradzki, J.A.: An adaptive local deconvolution method for implicit LES. J. Comput. Phys. 213(1), 413–436 (2006)MathSciNetMATHCrossRef Hickel, S., Adams, N.A., Domaradzki, J.A.: An adaptive local deconvolution method for implicit LES. J. Comput. Phys. 213(1), 413–436 (2006)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Honein, A.E., Moin, P.: Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comput. Phys. 201(2), 531–545 (2004)MATHCrossRef Honein, A.E., Moin, P.: Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comput. Phys. 201(2), 531–545 (2004)MATHCrossRef
17.
Zurück zum Zitat Ishihara, T., Gotoh, T., Kaneda, Y.: Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165–180 (2009)MathSciNetMATHCrossRef Ishihara, T., Gotoh, T., Kaneda, Y.: Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165–180 (2009)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Jagannathan, S., Donzis, D.A.: Reynolds and Mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations. J. Fluid Mech. 789, 669–707 (2016)MathSciNetCrossRef Jagannathan, S., Donzis, D.A.: Reynolds and Mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations. J. Fluid Mech. 789, 669–707 (2016)MathSciNetCrossRef
19.
Zurück zum Zitat Jocksch, A.: Direct numerical simulation of turbulent spots in high-speed boundary layers. Ph.D. thesis, ETH Zurich, Zurich (2009) Jocksch, A.: Direct numerical simulation of turbulent spots in high-speed boundary layers. Ph.D. thesis, ETH Zurich, Zurich (2009)
20.
Zurück zum Zitat Jocksch, A., Kleiser, L.: Exergetic aspects of high-speed boundary layers. Proc. Appl. Math. Mech. 6(1), 529–530 (2006)CrossRef Jocksch, A., Kleiser, L.: Exergetic aspects of high-speed boundary layers. Proc. Appl. Math. Mech. 6(1), 529–530 (2006)CrossRef
21.
Zurück zum Zitat Jocksch, A., Kraushaar, M., Daverio, D.: Optimized all-to-all communication on multicore architectures applied to FFTs with pencil decomposition. Pract. Exper. Concurr. Comput. 31, e4964 (2018) Jocksch, A., Kraushaar, M., Daverio, D.: Optimized all-to-all communication on multicore architectures applied to FFTs with pencil decomposition. Pract. Exper. Concurr. Comput. 31, e4964 (2018)
22.
Zurück zum Zitat Karlsson, S.: Energy, entropy and exergy in the atmosphere. Ph.D. thesis, Chalmers University of Technology, Göteborg (1990) Karlsson, S.: Energy, entropy and exergy in the atmosphere. Ph.D. thesis, Chalmers University of Technology, Göteborg (1990)
23.
Zurück zum Zitat Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. Lond. A 434, 9–13 (1991). Reprint from Dokl. Akad. Nauk SSSR 30, 301 (1941) Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. Lond. A 434, 9–13 (1991). Reprint from Dokl. Akad. Nauk SSSR 30, 301 (1941)
24.
Zurück zum Zitat Kotas, T.: The Exergy Method of Thermal Analysis. Butterworths, London (1985) Kotas, T.: The Exergy Method of Thermal Analysis. Butterworths, London (1985)
25.
26.
Zurück zum Zitat Kritsuk, A.G., Norman, M.L., Padoan, P., Wagner, R.: The statistics of supersonic isothermal turbulence. Astrophys. J. 665(1), 416–431 (2007)CrossRef Kritsuk, A.G., Norman, M.L., Padoan, P., Wagner, R.: The statistics of supersonic isothermal turbulence. Astrophys. J. 665(1), 416–431 (2007)CrossRef
29.
Zurück zum Zitat Lior, N., Sarmiento-Darkin, W., Al-Sharqawi, H.S.: The exergy fields in transport processes: their calculation and use. Energy 31(5), 553–578 (2006)CrossRef Lior, N., Sarmiento-Darkin, W., Al-Sharqawi, H.S.: The exergy fields in transport processes: their calculation and use. Energy 31(5), 553–578 (2006)CrossRef
30.
Zurück zum Zitat Mathew, J., Lechner, R., Foysi, H., Sesterhenn, J., Friedrich, R.: An explicit filtering method for large eddy simulation of compressible flows. Phys. Fluids 15(8), 2279–2289 (2003)MATHCrossRef Mathew, J., Lechner, R., Foysi, H., Sesterhenn, J., Friedrich, R.: An explicit filtering method for large eddy simulation of compressible flows. Phys. Fluids 15(8), 2279–2289 (2003)MATHCrossRef
31.
Zurück zum Zitat Müller, S.: Numerical investigations of compressible turbulent swirling jet flows. Ph.D. thesis, ETH Zurich, Zurich (2007) Müller, S.: Numerical investigations of compressible turbulent swirling jet flows. Ph.D. thesis, ETH Zurich, Zurich (2007)
33.
Zurück zum Zitat Petersen, M.R., Livescu, D.: Forcing for statistically stationary compressible isotropic turbulence. Phys. Fluids 22(11), 116101 (2010)CrossRef Petersen, M.R., Livescu, D.: Forcing for statistically stationary compressible isotropic turbulence. Phys. Fluids 22(11), 116101 (2010)CrossRef
34.
36.
Zurück zum Zitat Schlichting, H., Gersten, K.: Boundary-Layer Theory, 9th edn. Springer, Berlin (2017)MATHCrossRef Schlichting, H., Gersten, K.: Boundary-Layer Theory, 9th edn. Springer, Berlin (2017)MATHCrossRef
37.
Zurück zum Zitat Sciubba, E., Zullo, F.: Exergy dynamics of systems in thermal or concentration non-equilibrium. Entropy 19(6), 263 (2017)CrossRef Sciubba, E., Zullo, F.: Exergy dynamics of systems in thermal or concentration non-equilibrium. Entropy 19(6), 263 (2017)CrossRef
38.
Zurück zum Zitat Sciubba, E., Zullo, F.: On the quantification of non-equilibrium exergy for thermodynamic systems evolving according to Cattaneo’s equation. Int. J. Thermodyn. 22(1), 19–24 (2019)CrossRef Sciubba, E., Zullo, F.: On the quantification of non-equilibrium exergy for thermodynamic systems evolving according to Cattaneo’s equation. Int. J. Thermodyn. 22(1), 19–24 (2019)CrossRef
39.
Zurück zum Zitat Stolz, S., Adams, N.A., Kleiser, L.: The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids 13(10), 2985–3001 (2001)MATHCrossRef Stolz, S., Adams, N.A., Kleiser, L.: The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids 13(10), 2985–3001 (2001)MATHCrossRef
40.
Zurück zum Zitat Subbareddy, P.K., Candler, G.V.: A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows. J. Comput. Phys. 228(5), 1347–1364 (2009)MathSciNetMATHCrossRef Subbareddy, P.K., Candler, G.V.: A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows. J. Comput. Phys. 228(5), 1347–1364 (2009)MathSciNetMATHCrossRef
41.
Zurück zum Zitat Szargut, J.: Exergy Method: Technical and Ecological Applications. WIT Press, Southampton (2005) Szargut, J.: Exergy Method: Technical and Ecological Applications. WIT Press, Southampton (2005)
42.
43.
Zurück zum Zitat Visbal, M.R., Gaitonde, D.V.: High-order-accurate methods for complex unsteady subsonic flows. AIAA J. 37(10), 1231–1239 (1999)CrossRef Visbal, M.R., Gaitonde, D.V.: High-order-accurate methods for complex unsteady subsonic flows. AIAA J. 37(10), 1231–1239 (1999)CrossRef
44.
Zurück zum Zitat Xie, C., Wang, J., Li, H., Wan, M., Chen, S.: A modified optimal LES model for highly compressible isotropic turbulence. Phys. Fluids 30(6), 065108 (2018)CrossRef Xie, C., Wang, J., Li, H., Wan, M., Chen, S.: A modified optimal LES model for highly compressible isotropic turbulence. Phys. Fluids 30(6), 065108 (2018)CrossRef
Metadaten
Titel
The exergy concept and compressible turbulence
verfasst von
Andreas Jocksch
Publikationsdatum
19.05.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Theoretical and Computational Fluid Dynamics / Ausgabe 3/2020
Print ISSN: 0935-4964
Elektronische ISSN: 1432-2250
DOI
https://doi.org/10.1007/s00162-020-00533-z

Weitere Artikel der Ausgabe 3/2020

Theoretical and Computational Fluid Dynamics 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.