Skip to main content
Erschienen in: Computational Mechanics 5/2019

29.04.2019 | Original Paper

The extended finite element method with novel crack-tip enrichment functions for dynamic fracture analysis of interfacial cracks in piezoelectric–piezomagnetic bi-layered structures

verfasst von: Z. Yan, W. J. Feng, Ch. Zhang, J. X. Liu

Erschienen in: Computational Mechanics | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper investigates the dynamic fracture problems of interfacial cracks in piezoelectric–piezomagnetic (PE–PM) bi-layered composite structures under in-plane coupled electro-magneto-mechanical impact loadings by means of the extended finite element method (X-FEM). Considering the magnetoelectrically impermeable crack-face conditions and multi-filed coupled properties in the PE–PM composites, novel and more suitable crack-tip enrichment functions for interfacial cracks in PE–PM bi-layered composite structures are newly derived and implemented in the X-FEM, where the Newmark method is applied and proved to be effective. As the fracture parameter, the J-integral is evaluated using the domain-form of the path-independent contour integral. For dynamic analysis of interfacial cracks in infinite PE–PM bi-layered composite structures, absorbing layers based on the Sarma absorbing boundary conditions are adopted and applied to avoid the unphysical wave reflections at the artificially introduced boundaries in the X-FEM meshes. In the numerical examples, the validity of the proposed scheme is verified by comparing the numerical solutions provided by the X-FEM with either analytical results obtained by solving the corresponding singular integral equations or possible stationary values obtained by introducing the corresponding absorbing layers. Finally, by the numerical examples, the effects of the applied dynamic loadings, time variable and structural geometries on the dynamic J-integral are analyzed and discussed in detail. Some important conclusions are drawn, which should be helpful for the design and applications of the PE–PM layered composite structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Li YD, Zhao H, Zhang N (2013) Mixed mode fracture of a piezoelectric–piezomagnetic bi-layer structure with two un-coaxial cracks parallel to the interface and each in a layer. Int J Solids Struct 50(22–23):3610–3617CrossRef Li YD, Zhao H, Zhang N (2013) Mixed mode fracture of a piezoelectric–piezomagnetic bi-layer structure with two un-coaxial cracks parallel to the interface and each in a layer. Int J Solids Struct 50(22–23):3610–3617CrossRef
2.
Zurück zum Zitat Nan CW, Bichurin MI, Dong SX et al (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103(3):031101CrossRef Nan CW, Bichurin MI, Dong SX et al (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103(3):031101CrossRef
3.
Zurück zum Zitat Li YD, Lee KY, Feng FX (2011) Magnetostrictive/electrostrictive fracture of the piezomagnetic and piezoelectric layers in a multiferroic composite: anti-plane case. Int J Solids Struct 48(9):1311–1317MATHCrossRef Li YD, Lee KY, Feng FX (2011) Magnetostrictive/electrostrictive fracture of the piezomagnetic and piezoelectric layers in a multiferroic composite: anti-plane case. Int J Solids Struct 48(9):1311–1317MATHCrossRef
4.
Zurück zum Zitat Jin J, Ma P, Feng WJ (2013) Further analysis for fracture behaviors of an interfacial crack between piezoelectric and piezomagnetic layers. Eng Mech 30(6):327–333 Jin J, Ma P, Feng WJ (2013) Further analysis for fracture behaviors of an interfacial crack between piezoelectric and piezomagnetic layers. Eng Mech 30(6):327–333
5.
Zurück zum Zitat Wan YP, Yue YP, Zhong Z (2012) Multilayered piezomagnetic/piezoelectric composite with periodic interface cracks under magnetic or electric field. Eng Fract Mech 84:132–145CrossRef Wan YP, Yue YP, Zhong Z (2012) Multilayered piezomagnetic/piezoelectric composite with periodic interface cracks under magnetic or electric field. Eng Fract Mech 84:132–145CrossRef
6.
Zurück zum Zitat Tian W, Zhong Z, Li Y (2016) Multilayered piezomagnetic/piezoelectric composites with periodic interfacial cracks subject to in-plane loading. Smart Mater Struct 25(1):015029CrossRef Tian W, Zhong Z, Li Y (2016) Multilayered piezomagnetic/piezoelectric composites with periodic interfacial cracks subject to in-plane loading. Smart Mater Struct 25(1):015029CrossRef
7.
Zurück zum Zitat Yu T, Bui TQ, Liu P et al (2015) Interfacial dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method. Int J Solids Struct 67–68:205–218CrossRef Yu T, Bui TQ, Liu P et al (2015) Interfacial dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method. Int J Solids Struct 67–68:205–218CrossRef
8.
Zurück zum Zitat Feng WJ, Li YS, Xu ZH (2009) Transient response of an interfacial crack between dissimilar magnetoelectroelastic layers under magnetoelectromechanical impact loadings: mode-I problem. Int J Solids Struct 46(18):3346–3356MATHCrossRef Feng WJ, Li YS, Xu ZH (2009) Transient response of an interfacial crack between dissimilar magnetoelectroelastic layers under magnetoelectromechanical impact loadings: mode-I problem. Int J Solids Struct 46(18):3346–3356MATHCrossRef
9.
Zurück zum Zitat Wang BL, Han JC, Du SY (2010) Transient fracture of a layered magnetoelectroelastic medium. Mech Mater 42(3):354–364CrossRef Wang BL, Han JC, Du SY (2010) Transient fracture of a layered magnetoelectroelastic medium. Mech Mater 42(3):354–364CrossRef
10.
Zurück zum Zitat Ma P, Su RKL, Feng WJ (2018) Singularity of subsonic and transonic crack propagations along interfaces of magnetoelectroelastic bimaterials. Int J Eng Sci 129:21–33MathSciNetMATHCrossRef Ma P, Su RKL, Feng WJ (2018) Singularity of subsonic and transonic crack propagations along interfaces of magnetoelectroelastic bimaterials. Int J Eng Sci 129:21–33MathSciNetMATHCrossRef
11.
Zurück zum Zitat Wang BL, Mai YW (2007) Self-consistent analysis of coupled magnetoelectroelastic fracture theoretical investigation and finite element verification. Comput Methods Appl Mech Eng 196(13–16):2044–2054MathSciNetMATHCrossRef Wang BL, Mai YW (2007) Self-consistent analysis of coupled magnetoelectroelastic fracture theoretical investigation and finite element verification. Comput Methods Appl Mech Eng 196(13–16):2044–2054MathSciNetMATHCrossRef
12.
Zurück zum Zitat Lei J, Zhang Ch, Bui TQ (2015) Transient dynamic interface crack analysis in magnetoelectroelastic bi-materials by a time-domain BEM. Eur J Mech A Solids 49:146–157MathSciNetMATHCrossRef Lei J, Zhang Ch, Bui TQ (2015) Transient dynamic interface crack analysis in magnetoelectroelastic bi-materials by a time-domain BEM. Eur J Mech A Solids 49:146–157MathSciNetMATHCrossRef
13.
Zurück zum Zitat Sladek J, Sladek V, Solek P et al (2008) Fracture analysis of cracks in magneto-electro-elastic solids by the MLPG. Comput Mech 42(5):697–714MATHCrossRef Sladek J, Sladek V, Solek P et al (2008) Fracture analysis of cracks in magneto-electro-elastic solids by the MLPG. Comput Mech 42(5):697–714MATHCrossRef
14.
Zurück zum Zitat Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620MATHCrossRef Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620MATHCrossRef
15.
Zurück zum Zitat Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150MathSciNetMATHCrossRef Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150MathSciNetMATHCrossRef
16.
Zurück zum Zitat Liu P, Yu T, Bui TQ et al (2013) Transient dynamic crack analysis in non-homogeneous functionally graded piezoelectric materials by the X-FEM. Comput Mater Sci 69(1):542–558CrossRef Liu P, Yu T, Bui TQ et al (2013) Transient dynamic crack analysis in non-homogeneous functionally graded piezoelectric materials by the X-FEM. Comput Mater Sci 69(1):542–558CrossRef
17.
Zurück zum Zitat Béchet E, Scherzer M, Kuna M (2009) Application of the X-FEM to the fracture of piezoelectric materials. Int J Numer Methods Eng 77(11):1535–1565MathSciNetMATHCrossRef Béchet E, Scherzer M, Kuna M (2009) Application of the X-FEM to the fracture of piezoelectric materials. Int J Numer Methods Eng 77(11):1535–1565MathSciNetMATHCrossRef
18.
Zurück zum Zitat Ma P, Su RKL, Feng WJ et al (2015) The extended finite element method with new crack-tip enrichment functions for an interface crack between two dissimilar piezoelectric materials. Int J Numer Methods Eng 103(2):94–113MathSciNetMATHCrossRef Ma P, Su RKL, Feng WJ et al (2015) The extended finite element method with new crack-tip enrichment functions for an interface crack between two dissimilar piezoelectric materials. Int J Numer Methods Eng 103(2):94–113MathSciNetMATHCrossRef
19.
Zurück zum Zitat Rojas-Díaz R, Sukumar N, Sáez A et al (2011) Fracture in magnetoelectroelastic materials using the extended finite element method. Int J Numer Methods Eng 88(12):1238–1259MathSciNetMATHCrossRef Rojas-Díaz R, Sukumar N, Sáez A et al (2011) Fracture in magnetoelectroelastic materials using the extended finite element method. Int J Numer Methods Eng 88(12):1238–1259MathSciNetMATHCrossRef
20.
Zurück zum Zitat Ma P, Su RKL, Feng WJ (2016) Crack tip enrichment functions for extended finite element analysis of two-dimensional interface cracks in anisotropic magnetoelectroelastic bimaterials. Eng Fract Mech 161:21–39CrossRef Ma P, Su RKL, Feng WJ (2016) Crack tip enrichment functions for extended finite element analysis of two-dimensional interface cracks in anisotropic magnetoelectroelastic bimaterials. Eng Fract Mech 161:21–39CrossRef
21.
Zurück zum Zitat Bui TQ, Zhang Ch (2012) Extended finite element simulation of stationary dynamic cracks in piezoelectric solids under impact loading. Comput Mater Sci 62:243–257CrossRef Bui TQ, Zhang Ch (2012) Extended finite element simulation of stationary dynamic cracks in piezoelectric solids under impact loading. Comput Mater Sci 62:243–257CrossRef
22.
Zurück zum Zitat Bui TQ, Zhang Ch (2013) Analysis of generalized dynamic intensity factors of cracked magnetoelectroelastic solids by X-FEM. Finite Elem Anal Des 69(1):19–36CrossRef Bui TQ, Zhang Ch (2013) Analysis of generalized dynamic intensity factors of cracked magnetoelectroelastic solids by X-FEM. Finite Elem Anal Des 69(1):19–36CrossRef
23.
Zurück zum Zitat Liu P, Yu T, Bui TQ et al (2014) Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method. Int J Solids Struct 51(11–12):2167–2182CrossRef Liu P, Yu T, Bui TQ et al (2014) Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method. Int J Solids Struct 51(11–12):2167–2182CrossRef
24.
Zurück zum Zitat Bhargava RR, Sharma K (2011) A study of finite size effects on cracked 2-D piezoelectric media using extended finite element method. Comput Mater Sci 50(6):1834–1845CrossRef Bhargava RR, Sharma K (2011) A study of finite size effects on cracked 2-D piezoelectric media using extended finite element method. Comput Mater Sci 50(6):1834–1845CrossRef
25.
Zurück zum Zitat Bhargava RR, Sharma K (2012) Application of X-FEM to study two-unequal-collinear cracks in 2-D finite magnetoelectoelastic specimen. Comput Mater Sci 60:75–98CrossRef Bhargava RR, Sharma K (2012) Application of X-FEM to study two-unequal-collinear cracks in 2-D finite magnetoelectoelastic specimen. Comput Mater Sci 60:75–98CrossRef
26.
Zurück zum Zitat Sukumar N, Huang ZY, Prévost JH et al (2004) Partition of unity enrichment for bimaterial interface cracks. Int J Numer Methods Eng 59(8):1075–1102MATHCrossRef Sukumar N, Huang ZY, Prévost JH et al (2004) Partition of unity enrichment for bimaterial interface cracks. Int J Numer Methods Eng 59(8):1075–1102MATHCrossRef
27.
28.
Zurück zum Zitat Ou ZC, Wu X (2003) On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials. Int J Solids Struct 40(26):7499–7511MATHCrossRef Ou ZC, Wu X (2003) On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials. Int J Solids Struct 40(26):7499–7511MATHCrossRef
29.
Zurück zum Zitat Li R, Kardomateas GA (2007) The mixed mode I and II interface crack in piezoelectromagneto-elastic anisotropic bimaterials. J Appl Mech Trans ASME 74(4):614–627CrossRef Li R, Kardomateas GA (2007) The mixed mode I and II interface crack in piezoelectromagneto-elastic anisotropic bimaterials. J Appl Mech Trans ASME 74(4):614–627CrossRef
30.
Zurück zum Zitat Sarma GS, Mallick K, Gadhinglajkar VR (1998) Nonreflecting boundary condition in finite-element formulation for an elastic wave equation. Geophysics 63(3):1006–1016CrossRef Sarma GS, Mallick K, Gadhinglajkar VR (1998) Nonreflecting boundary condition in finite-element formulation for an elastic wave equation. Geophysics 63(3):1006–1016CrossRef
31.
Zurück zum Zitat Semblat JF, Gandomzadeh A, Lenti L (2010) A simple numerical absorbing layer method in elastodynamics. C R Mec 338(1):24–32MATHCrossRef Semblat JF, Gandomzadeh A, Lenti L (2010) A simple numerical absorbing layer method in elastodynamics. C R Mec 338(1):24–32MATHCrossRef
32.
Zurück zum Zitat Smelser RE, Gurtin ME (1977) On the J-integral for bi-material bodies. Int J Fract 13(3):382–384 Smelser RE, Gurtin ME (1977) On the J-integral for bi-material bodies. Int J Fract 13(3):382–384
33.
Zurück zum Zitat Chessa J, Wang H, Belytschko T et al (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng 57(7):1015–1038MATHCrossRef Chessa J, Wang H, Belytschko T et al (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng 57(7):1015–1038MATHCrossRef
34.
Zurück zum Zitat Belytschko T, Chen H, Xu J et al (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905MATHCrossRef Belytschko T, Chen H, Xu J et al (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905MATHCrossRef
35.
Zurück zum Zitat Menk A, Stéphane PA (2011) A robust preconditioning technique for the extended finite element method. Int J Numer Methods Eng 85(13):1609–1632MathSciNetMATHCrossRef Menk A, Stéphane PA (2011) A robust preconditioning technique for the extended finite element method. Int J Numer Methods Eng 85(13):1609–1632MathSciNetMATHCrossRef
36.
Zurück zum Zitat Moës N, Cloirec M, Cartraud P et al (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(28):3163–3177MATHCrossRef Moës N, Cloirec M, Cartraud P et al (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(28):3163–3177MATHCrossRef
37.
Zurück zum Zitat Herrmann KP, Loboda VV, Khodanen TV (2010) An interface crack with contact zones in a piezoelectric/piezomagnetic bimaterial. Arch Appl Mech 80(6):651–670MATHCrossRef Herrmann KP, Loboda VV, Khodanen TV (2010) An interface crack with contact zones in a piezoelectric/piezomagnetic bimaterial. Arch Appl Mech 80(6):651–670MATHCrossRef
38.
Zurück zum Zitat Rao SG, Xia YM (1995) Dynamic elastic-plastic fem analysis of a fracture specimen under plane stress state. Eng Fract Mech 52(4):755–763CrossRef Rao SG, Xia YM (1995) Dynamic elastic-plastic fem analysis of a fracture specimen under plane stress state. Eng Fract Mech 52(4):755–763CrossRef
39.
Zurück zum Zitat Laborde P, Pommier J, Renard Y et al (2010) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64(3):354–381MATHCrossRef Laborde P, Pommier J, Renard Y et al (2010) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64(3):354–381MATHCrossRef
40.
Zurück zum Zitat Hattori G, Rojas-Díaz R, Sáez A et al (2012) New anisotropic crack-tip enrichment functions for the extended finite element method. Comput Mech 50(5):591–601MathSciNetMATHCrossRef Hattori G, Rojas-Díaz R, Sáez A et al (2012) New anisotropic crack-tip enrichment functions for the extended finite element method. Comput Mech 50(5):591–601MathSciNetMATHCrossRef
41.
Zurück zum Zitat Idesman AV (2007) Solution of linear elastodynamics problems with space-time finite elements on structured and unstructured meshes. Comput Methods Appl Mech Eng 196(9):1787–1815MATHCrossRef Idesman AV (2007) Solution of linear elastodynamics problems with space-time finite elements on structured and unstructured meshes. Comput Methods Appl Mech Eng 196(9):1787–1815MATHCrossRef
42.
Zurück zum Zitat Huang CY (1997) Recent progress in multiblock hybrid structured and unstructured mesh generation. Comput Methods Appl Mech Eng 150(1–4):1–24MATHCrossRef Huang CY (1997) Recent progress in multiblock hybrid structured and unstructured mesh generation. Comput Methods Appl Mech Eng 150(1–4):1–24MATHCrossRef
43.
Zurück zum Zitat Asadpoure A, Mohammadi S (2010) Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method. Int J Numer Methods Eng 69(10):2150–2172MATHCrossRef Asadpoure A, Mohammadi S (2010) Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method. Int J Numer Methods Eng 69(10):2150–2172MATHCrossRef
Metadaten
Titel
The extended finite element method with novel crack-tip enrichment functions for dynamic fracture analysis of interfacial cracks in piezoelectric–piezomagnetic bi-layered structures
verfasst von
Z. Yan
W. J. Feng
Ch. Zhang
J. X. Liu
Publikationsdatum
29.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01709-z

Weitere Artikel der Ausgabe 5/2019

Computational Mechanics 5/2019 Zur Ausgabe

Neuer Inhalt