2018 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
In order to ensure driving safety and advanced driver assistance systems (ADAS) attracted more and more attention. Lane departure warning system is an important part of the system. Fast and stable lane detection is a prerequisite for Lane detection under complex background. In this paper, we propose a new lane detection method through a bird’s eye view maps and modified RANSAC (random sampling) based on inspiration from the road feature extraction algorithm for remote sensing images. According to the image of a bird’s eye view, we can identify the tag line through progressive probabilistic Hough transform in the opposite lane detection. Then the group rows are detected by a new weighting scheme based on distance, we can get a candidate lane field. Each field, Lane the RANSAC algorithm is improved and the dual-model fitting. Therefore, the curvature of the road direction can be predicted and the slope of the line. Finally, our results show that lane detection algorithm is robust and real-time performance in a variety of road conditions.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Peden, S., Sleet, M., Hyder, A., Jarawan, M.: Global plan for the decade of action for road safety 2011–2020. UN: World report on road traffic injury prevention 5, 1–21 (2013) Peden, S., Sleet, M., Hyder, A., Jarawan, M.: Global plan for the decade of action for road safety 2011–2020. UN: World report on road traffic injury prevention
5, 1–21 (2013)
2.
Zurück zum Zitat Ryosuke, O., Yuki, K., Kazuaki, T.: A survey of technical trend of ADAS and autonomous driving. In: 2014 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), vol. 4, pp. 1–4 (2014) Ryosuke, O., Yuki, K., Kazuaki, T.: A survey of technical trend of ADAS and autonomous driving. In: 2014 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), vol. 4, pp. 1–4 (2014)
3.
Zurück zum Zitat Sibel, Y., Gökhan, Y., Ekrem, D.: Keeping the vehicle on the road: a survey on on-road lane detection systems. ACM Comput. Surv. 46(1), 1–43 (2013) Sibel, Y., Gökhan, Y., Ekrem, D.: Keeping the vehicle on the road: a survey on on-road lane detection systems. ACM Comput. Surv.
46(1), 1–43 (2013)
4.
Zurück zum Zitat Kong, H., Audibert, J.Y., Ponce, J.: General road detection from a single image. IEEE Trans. Image Process. 19(8), 2211–2220 (2010) CrossRefMATHMathSciNet Kong, H., Audibert, J.Y., Ponce, J.: General road detection from a single image. IEEE Trans. Image Process.
19(8), 2211–2220 (2010)
CrossRefMATHMathSciNet
5.
Zurück zum Zitat Wang, J.G., Lin, C.J., Chen, S.M.: Applying fuzzy method to vision-based lane detection and departure warning system. Expert Syst. Appl. 37(1), 113–126 (2010) CrossRef Wang, J.G., Lin, C.J., Chen, S.M.: Applying fuzzy method to vision-based lane detection and departure warning system. Expert Syst. Appl.
37(1), 113–126 (2010)
CrossRef
6.
Zurück zum Zitat Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986) CrossRef Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell.
8(6), 679–698 (1986)
CrossRef
7.
Zurück zum Zitat Richard, O.D., Peter, E.H.: Use of the Hough transformation to detect lines and curves in picture. Graph. Image Process. 15(1), 11–15 (1972) MATH Richard, O.D., Peter, E.H.: Use of the Hough transformation to detect lines and curves in picture. Graph. Image Process.
15(1), 11–15 (1972)
MATH
8.
Zurück zum Zitat Kuk, J.G., An, J.H., Ki, H., Cho, N.I.: Fast lane detection and tracking based on Hough transform with reduced memory requirement. In: IEEE Conference on Intelligent Transportation Systems, pp. 1344–1349 (2010) Kuk, J.G., An, J.H., Ki, H., Cho, N.I.: Fast lane detection and tracking based on Hough transform with reduced memory requirement. In: IEEE Conference on Intelligent Transportation Systems, pp. 1344–1349 (2010)
9.
Zurück zum Zitat Hsiao, P.Y., Yeh, C.W.: A portable real-time lane departure warning system based on embedded calculating technique. In: 2006 IEEE 63rd Vehicular Technology Conference, vol. 6, pp. 2982–2986 (2006) Hsiao, P.Y., Yeh, C.W.: A portable real-time lane departure warning system based on embedded calculating technique. In: 2006 IEEE 63rd Vehicular Technology Conference, vol. 6, pp. 2982–2986 (2006)
10.
Zurück zum Zitat Chin, K.Y., Lin, S.F.: Lane detection using color-based segmentation. In: IEEE Intelligent Vehicles Symposium, pp. 706–711 (2005) Chin, K.Y., Lin, S.F.: Lane detection using color-based segmentation. In: IEEE Intelligent Vehicles Symposium, pp. 706–711 (2005)
11.
Zurück zum Zitat Sun, T.Y., Tsai, S.J., Chan, V.: HSI color model based lane-marking detection. In: IEEE Conference on Intelligent Transport System, pp. 1168–1172 (2006) Sun, T.Y., Tsai, S.J., Chan, V.: HSI color model based lane-marking detection. In: IEEE Conference on Intelligent Transport System, pp. 1168–1172 (2006)
- Titel
- The Fast Lane Detection of Road Using RANSAC Algorithm
- DOI
- https://doi.org/10.1007/978-3-319-67071-3_1
- Autoren:
-
Huan Du
Zheng Xu
Yong Ding
- Sequenznummer
- 1