Skip to main content

2016 | OriginalPaper | Buchkapitel

3. The Floquet Coefficient for Nonautonomous Linear Hamiltonian Systems: Atkinson Problems

verfasst von : Russell Johnson, Rafael Obaya, Sylvia Novo, Carmen Núñez, Roberta Fabbri

Erschienen in: Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Let a family of linear Hamiltonian systems determined by a coefficient matrix H be perturbed as to obtain \(H +\lambda J^{-1}\varGamma\), where \(\lambda \in \mathbb{C}\), \(J = \left [\begin{matrix}\scriptstyle 0_{n}&\scriptstyle -I_{n} \\ \scriptstyle I_{n}&\scriptstyle \ \ 0_{n} \end{matrix}\right ]\), and Γ is a positive semidefinite matrix-valued function satisfying an Atkinson nondegeneracy condition. Such a condition ensures the exponential dichotomy property for \(\lambda \notin \mathbb{R}\), as well as the existence of the corresponding Weyl functions, which are determined by the initial data of the solutions bounded as \(t \rightarrow \pm \infty \). These properties can be exploited to define an analytic to define an analytic function \(w_{\varGamma }(\lambda )\) for \(\lambda \notin \mathbb{R}\) on the upper complex half-plane, which is called the Floquet coefficient, whose real part \(-\beta _{\varGamma }(\lambda )\) agrees with the negative Lyapunov index and whose imaginary part \(\alpha _{\varGamma }(\lambda )\) provides an extension of the rotation number. To prove these facts is the goal of this chapter. Among the many consequences of the analysis presented here, it is appropriate to highlight two: first, the rotation number vanishes for λ in an nonempty real interval if and only of all systems corresponding to those values of λ have exponential dichotomy; and second, the rotation number provides a labelling for the gaps of the intervals of the spectrum of the family of operators \(\mathcal{L} = J(d/dt - H)\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat F.V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press Inc., New York, 1964. F.V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press Inc., New York, 1964.
11.
Zurück zum Zitat B.R. Barmish, W.E. Schmitendorf, A necessary and sufficient condition for local constrained controllability of a linear system, IEEE Trans. Autom. Control 25 (1980), 97–100. B.R. Barmish, W.E. Schmitendorf, A necessary and sufficient condition for local constrained controllability of a linear system, IEEE Trans. Autom. Control 25 (1980), 97–100.
28.
Zurück zum Zitat E. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. E. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
36.
Zurück zum Zitat W. Craig, B. Simon, Subharmonicity of the Lyapunov index, Duke Math. J. 50 (2) (1983), 551–560. W. Craig, B. Simon, Subharmonicity of the Lyapunov index, Duke Math. J. 50 (2) (1983), 551–560.
39.
Zurück zum Zitat N. Dunford, J. Schwartz, Linear Operators, Part II, Interscience, New York, 1967. N. Dunford, J. Schwartz, Linear Operators, Part II, Interscience, New York, 1967.
46.
Zurück zum Zitat R. Fabbri, R. Johnson, C. Núñez, Rotation number for non-autonomous linear Hamiltonian systems II: The Floquet coefficient, Z. Angew. Math. Phys. 54 (2003), 652–676. R. Fabbri, R. Johnson, C. Núñez, Rotation number for non-autonomous linear Hamiltonian systems II: The Floquet coefficient, Z. Angew. Math. Phys. 54 (2003), 652–676.
54.
Zurück zum Zitat F. Gesztesy, E. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218 (2000), 61–138. F. Gesztesy, E. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218 (2000), 61–138.
55.
Zurück zum Zitat R. Giachetti, R. Johnson, The Floquet exponent for two-dimensional linear systems with bounded coefficients, J. Math Pures et Appli. 65 (1986), 93–117. R. Giachetti, R. Johnson, The Floquet exponent for two-dimensional linear systems with bounded coefficients, J. Math Pures et Appli. 65 (1986), 93–117.
61.
Zurück zum Zitat D. Hinton, J. Shaw, On Titchmarsh-Weyl m-functions for linear Hamiltonian systems, J. Differential Equations 40 (1981), 316–342. D. Hinton, J. Shaw, On Titchmarsh-Weyl m-functions for linear Hamiltonian systems, J. Differential Equations 40 (1981), 316–342.
62.
Zurück zum Zitat D. Hinton, J. Shaw, Hamiltonian systems of limit point or limit circle type with both endpoints singular, J. Differential Equations 50 (1983), 444–464. D. Hinton, J. Shaw, Hamiltonian systems of limit point or limit circle type with both endpoints singular, J. Differential Equations 50 (1983), 444–464.
71.
Zurück zum Zitat R. Johnson, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, J. Differential Equations 61 (1986), 54–78. R. Johnson, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, J. Differential Equations 61 (1986), 54–78.
72.
Zurück zum Zitat R. Johnson, m-functions and Floquet exponents for linear differential systems, Ann. Mat. Pura Appl. 147 (1987), 211–248. R. Johnson, m-functions and Floquet exponents for linear differential systems, Ann. Mat. Pura Appl. 147 (1987), 211–248.
73.
Zurück zum Zitat R. Johnson, J. Moser, The rotation number for almost periodic differential equations, Comm. Math. Phys. 84 (1982), 403–438. R. Johnson, J. Moser, The rotation number for almost periodic differential equations, Comm. Math. Phys. 84 (1982), 403–438.
75.
Zurück zum Zitat R. Johnson, M. Nerurkar, Exponential dichotomy and rotation number for linear Hamiltonian systems, J. Differential Equations 108 (1994), 201–216. R. Johnson, M. Nerurkar, Exponential dichotomy and rotation number for linear Hamiltonian systems, J. Differential Equations 108 (1994), 201–216.
77.
Zurück zum Zitat R. Johnson, M. Nerurkar, Controllability, stabilization, and the regulator problem for random differential systems, Mem. Amer. Math. Soc. 646, Amer. Math. Soc., Providence, 1998. R. Johnson, M. Nerurkar, Controllability, stabilization, and the regulator problem for random differential systems, Mem. Amer. Math. Soc. 646, Amer. Math. Soc., Providence, 1998.
90.
Zurück zum Zitat P. Koosis, Introduction to H p spaces, London Mathematical Society Lecture Note Series, Cambridge University Press, 1980. P. Koosis, Introduction to H p spaces, London Mathematical Society Lecture Note Series, Cambridge University Press, 1980.
91.
Zurück zum Zitat S. Kotani, B. Simon, Stochastic Schrödinger operators and Jacobi matrices on the strip, Commun. Math. Phys. 119 (1988), 403–429. S. Kotani, B. Simon, Stochastic Schrödinger operators and Jacobi matrices on the strip, Commun. Math. Phys. 119 (1988), 403–429.
98.
Zurück zum Zitat S. Magnus, S. Winkler, Hill’s Equation, Intersci. Publs., John Wiley and Sons, New York, 1966. S. Magnus, S. Winkler, Hill’s Equation, Intersci. Publs., John Wiley and Sons, New York, 1966.
128.
Zurück zum Zitat W. Rudin, Real and Complex Analysis, McGraw-Hill, Singapore, 1987. W. Rudin, Real and Complex Analysis, McGraw-Hill, Singapore, 1987.
Metadaten
Titel
The Floquet Coefficient for Nonautonomous Linear Hamiltonian Systems: Atkinson Problems
verfasst von
Russell Johnson
Rafael Obaya
Sylvia Novo
Carmen Núñez
Roberta Fabbri
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-29025-6_3

Neuer Inhalt