Skip to main content

2018 | OriginalPaper | Buchkapitel

The Flow Response of Reinforced Earth Structures Utilized Fine-Grained Poorly Draining Materials as Backfill

verfasst von : D. Bui Van, A. Chinkulkijniwat, S. Horpibulsuk, S. Yubonchit, A. Udomchai, I. Limrat, A. Le Tuan, H. Pham Tien, O. Kennedy

Erschienen in: Proceedings of the 4th Congrès International de Géotechnique - Ouvrages -Structures

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reinforced earth structures, later known as Mechanically Stabilized Earth (MSE) walls, have been widely employed over four decades due to their ease of installation, quick construction compared to conventional reinforce concrete. Yet, numerous failures of MSE walls structure take place. Most of those failures are frequently attributed to the presence of water within or behind the reinforced zone, flow response inside reinforced earth structures as well. Recently, the use of “high fines” and/or “high plasticity” soils for reinforced fill has become more frequent due to the difficulties in finding an appropriate borrow pit. This paper utilized a well calibrated numerical model to perform series of parametric calculation of MSE incorporated with drainage composite, in which fine-grained poorly draining material was utilized as backfill. The experiments were conducted to investigate the influences of water retention characteristics of poorly draining materials utilized as backfills on the seepage response in MSE wall as subjected to rising of upstream water table. The flow response was examined in terms of effective saturation distribution, changes in phreatic surface as well. The calculated results show that the larger pore size yields the narrower zone of high saturation. The more uniform pore size yields narrower effective saturation profile in range of intermediate saturation zone. The moisture profile in reinforced soil mass is somewhat affected by flow properties of the soil placed next to reinforced part. The distribution of effective saturation at the interface between backfill and wall drainage composite is also governed by the capillary barrier which taken place at the interface between two materials having different pore size.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vidal, H.: The principle of reinforced earth. Highw. Res. Rec. No 282, Transp. Res. Board Washington, DC (1969) Vidal, H.: The principle of reinforced earth. Highw. Res. Rec. No 282, Transp. Res. Board Washington, DC (1969)
2.
Zurück zum Zitat Horpibulsuk, S., Niramitkornburee, A.: Pullout resistance of bearing reinforcement embedded in sand. Soils Found. 50(2), 215–226 (2010)CrossRef Horpibulsuk, S., Niramitkornburee, A.: Pullout resistance of bearing reinforcement embedded in sand. Soils Found. 50(2), 215–226 (2010)CrossRef
3.
Zurück zum Zitat Stulgis, R.: Selecting reinforced fill materials for mse retaining walls. In: Geosynthetics Research and Development in Progress, pp. 1–6. ASCE (2005) Stulgis, R.: Selecting reinforced fill materials for mse retaining walls. In: Geosynthetics Research and Development in Progress, pp. 1–6. ASCE (2005)
4.
Zurück zum Zitat Zornberg, J., Mitchell, J.: Reinforced soil structures with poorly draining backfills. Part I: reinforcement interactions and functions. Geosynth. Int. 1(2), 103–147 (1994)CrossRef Zornberg, J., Mitchell, J.: Reinforced soil structures with poorly draining backfills. Part I: reinforcement interactions and functions. Geosynth. Int. 1(2), 103–147 (1994)CrossRef
5.
Zurück zum Zitat Mitchell, J.: Reinforced soil structures with poorly draining backfills part II: case histories and applications. Geosynth. Int. 2(1), 265–307 (1995)CrossRef Mitchell, J.: Reinforced soil structures with poorly draining backfills part II: case histories and applications. Geosynth. Int. 2(1), 265–307 (1995)CrossRef
6.
Zurück zum Zitat Koerner, R.M., Soong, T.-Y.: Geosynthetic reinforced segmental retaining walls. Geotext. Geomembr. 19(6), 359–386 (2001)CrossRef Koerner, R.M., Soong, T.-Y.: Geosynthetic reinforced segmental retaining walls. Geotext. Geomembr. 19(6), 359–386 (2001)CrossRef
7.
Zurück zum Zitat Chinkulkijniwat, A., Horpibulsuk, S., Bui Van, D., Udomchai, A., Goodary, R., Arulrajah, A.: Influential factors affecting drainage design considerations for mechanical stabilised earth walls using geocomposites. Geosynthetics Int. 1–18 (2016) Chinkulkijniwat, A., Horpibulsuk, S., Bui Van, D., Udomchai, A., Goodary, R., Arulrajah, A.: Influential factors affecting drainage design considerations for mechanical stabilised earth walls using geocomposites. Geosynthetics Int. 1–18 (2016)
8.
Zurück zum Zitat McKean, J., Inouye, K.: Field evaluation of the long-term performance of geocomposite sheet drains. Geotext. Geomembr. 19(4), 213–234 (2001)CrossRef McKean, J., Inouye, K.: Field evaluation of the long-term performance of geocomposite sheet drains. Geotext. Geomembr. 19(4), 213–234 (2001)CrossRef
9.
Zurück zum Zitat Narejo, D., Ramsey, B.: MSE wall drainage alternatives careful drainage design can prevent costly retaining-wall failures. Geotech. Fabr. Rep. 19(5), 26–29 (2001) Narejo, D., Ramsey, B.: MSE wall drainage alternatives careful drainage design can prevent costly retaining-wall failures. Geotech. Fabr. Rep. 19(5), 26–29 (2001)
10.
Zurück zum Zitat Leong, E.C., Rahardjo, H.: Review of soil-water characteristic curve equations. J. Geotech. Geoenviron. Eng. 123(12), 1106–1117 (1997)CrossRef Leong, E.C., Rahardjo, H.: Review of soil-water characteristic curve equations. J. Geotech. Geoenviron. Eng. 123(12), 1106–1117 (1997)CrossRef
11.
Zurück zum Zitat Too, V.K., Omuto, C.T., Biamah, E.K., Obiero, J.P.: Review of soil water retention characteristic (SWRC) models between saturation and oven dryness. Open J.Mod. Hydrol. 4(4), 173 (2014)CrossRef Too, V.K., Omuto, C.T., Biamah, E.K., Obiero, J.P.: Review of soil water retention characteristic (SWRC) models between saturation and oven dryness. Open J.Mod. Hydrol. 4(4), 173 (2014)CrossRef
12.
Zurück zum Zitat Marshall, T.J., Holmes, J.W., Rose, C.W.: Soil Physics, Cambridge University Press (1996) Marshall, T.J., Holmes, J.W., Rose, C.W.: Soil Physics, Cambridge University Press (1996)
13.
Zurück zum Zitat Fredlund, D.G., Xing, A.: Equations for the soil-water characteristic curve. Can. Geotech. J. 31(4), 521–532 (1994)CrossRef Fredlund, D.G., Xing, A.: Equations for the soil-water characteristic curve. Can. Geotech. J. 31(4), 521–532 (1994)CrossRef
14.
Zurück zum Zitat Omuto, C.: Biexponential model for water retention characteristics. Geoderma 149(3), 235–242 (2009)CrossRef Omuto, C.: Biexponential model for water retention characteristics. Geoderma 149(3), 235–242 (2009)CrossRef
15.
Zurück zum Zitat Bouazza, A., Zornberg, J., McCartney, J.S., Singh, R.M.: Unsaturated geotechnics applied to geoenvironmental engineering problems involving geosynthetics. Eng. Geol. 165, 143–153 (2013)CrossRef Bouazza, A., Zornberg, J., McCartney, J.S., Singh, R.M.: Unsaturated geotechnics applied to geoenvironmental engineering problems involving geosynthetics. Eng. Geol. 165, 143–153 (2013)CrossRef
16.
Zurück zum Zitat Bouazza, A., Freund, M., Nahlawi, H.: Water retention of nonwoven polyester geotextiles. Polym. Test. 25(8), 1038–1043 (2006)CrossRef Bouazza, A., Freund, M., Nahlawi, H.: Water retention of nonwoven polyester geotextiles. Polym. Test. 25(8), 1038–1043 (2006)CrossRef
17.
Zurück zum Zitat Gardner, W.: Mathematics of isothermal water conduction in unsaturated soil. Highw. Res. Board Spec. Rep. (40) (1958) Gardner, W.: Mathematics of isothermal water conduction in unsaturated soil. Highw. Res. Board Spec. Rep. (40) (1958)
18.
Zurück zum Zitat van-Genuchten.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980) van-Genuchten.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)
19.
Zurück zum Zitat Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976)CrossRef Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976)CrossRef
20.
Zurück zum Zitat Kosugi, K.: General model for unsaturated hydraulic conductivity for soils with lognormal pore-size distribution. Soil Sci. Soc. Am. J. 63(2), 270–277 (1999)CrossRef Kosugi, K.: General model for unsaturated hydraulic conductivity for soils with lognormal pore-size distribution. Soil Sci. Soc. Am. J. 63(2), 270–277 (1999)CrossRef
21.
Zurück zum Zitat Bui Van, D., Chinkulkijniwat, A., Horpibulsuk, S., et al.: Influence of nonwoven geotextile on the hydraulic response of mechanical stabilized earth wall. In: Proceeding of the sixth International Conference on Geotechnique, Construction Materials & Environment, Bangkok, Thailand November 2016. ISBN 978–49905958-6-9 C3051, 367-372 Bui Van, D., Chinkulkijniwat, A., Horpibulsuk, S., et al.: Influence of nonwoven geotextile on the hydraulic response of mechanical stabilized earth wall. In: Proceeding of the sixth International Conference on Geotechnique, Construction Materials & Environment, Bangkok, Thailand November 2016. ISBN 978–49905958-6-9 C3051, 367-372
22.
Zurück zum Zitat ASTM: 2008 Standard test methods for determination of the soil water chararcteristic curve for desorption using a hanging column, pressure extractor, chilled mirror hygrometer, and/or centrifuge, D6836. ASTM International ASTM: 2008 Standard test methods for determination of the soil water chararcteristic curve for desorption using a hanging column, pressure extractor, chilled mirror hygrometer, and/or centrifuge, D6836. ASTM International
23.
Zurück zum Zitat Iryo, T., Rowe, R.K.: On the hydraulic behavior of unsaturated nonwoven geotextiles. Geotext. Geomembr. 21(6), 381–404 (2003)CrossRef Iryo, T., Rowe, R.K.: On the hydraulic behavior of unsaturated nonwoven geotextiles. Geotext. Geomembr. 21(6), 381–404 (2003)CrossRef
24.
Zurück zum Zitat Wise, W.R., Clement, T., Molz, F.J.: Variably saturated modeling of transient drainage: sensitivity to soil properties. J. Hydrol. 161(1), 91–108 (1994)CrossRef Wise, W.R., Clement, T., Molz, F.J.: Variably saturated modeling of transient drainage: sensitivity to soil properties. J. Hydrol. 161(1), 91–108 (1994)CrossRef
Metadaten
Titel
The Flow Response of Reinforced Earth Structures Utilized Fine-Grained Poorly Draining Materials as Backfill
verfasst von
D. Bui Van
A. Chinkulkijniwat
S. Horpibulsuk
S. Yubonchit
A. Udomchai
I. Limrat
A. Le Tuan
H. Pham Tien
O. Kennedy
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6713-6_59