Skip to main content
Erschienen in: Journal of Scientific Computing 2/2020

01.02.2020

The Flux Reconstruction Method with Lax–Wendroff Type Temporal Discretization for Hyperbolic Conservation Laws

verfasst von: Shuai Lou, Chao Yan, Li-Bin Ma, Zhen-Hua Jiang

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we develop a Lax–Wendroff type time discretization method for high order Flux Reconstruction scheme to solve hyperbolic conservation laws. Through Cauchy–Kowalewski procedure, the resulting Lax–Wendroff Flux Reconstruction (LWFR) scheme is an alternative spatial–temporal coupling method to the popular Runge–Kutta Flux Reconstruction (RKFR) scheme. LWFR is a one-step explicit high order discontinuous finite element method and its discretization procedure is more compact and effective for certain problems than that of RKFR. Furthermore, aiming at accurate simulation of discontinuity, we propose a robust local artificial viscosity formulation of LWFR for the first time. A collection of successful numerical experiments show that LWFR can give essentially non-oscillatory and sharp solutions for discontinuity, and maintain designed order of accuracy for smooth regions, both in one-dimensional and two-dimensional Euler equations. In conclusion, LWFR scheme is cost effective and accuracy-preserving for certain problems and can be an attractive candidate to solve hyperbolic conservation laws.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference, AIAA 2007-4079 (2007) Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference, AIAA 2007-4079 (2007)
2.
Zurück zum Zitat Wang, Z.J., Gao, H.Y.: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys. 228, 8161–8186 (2009)MathSciNetMATH Wang, Z.J., Gao, H.Y.: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys. 228, 8161–8186 (2009)MathSciNetMATH
3.
Zurück zum Zitat Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47, 50–72 (2010)MathSciNetMATH Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47, 50–72 (2010)MathSciNetMATH
4.
Zurück zum Zitat Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetMATH Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetMATH
5.
Zurück zum Zitat Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)MathSciNetMATH Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)MathSciNetMATH
6.
Zurück zum Zitat Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)MathSciNetMATH Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)MathSciNetMATH
7.
Zurück zum Zitat Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids. J. Comput. Phys. 181, 186–221 (2002)MathSciNetMATH Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids. J. Comput. Phys. 181, 186–221 (2002)MathSciNetMATH
8.
Zurück zum Zitat Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125, 244–261 (1996)MathSciNetMATH Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125, 244–261 (1996)MathSciNetMATH
9.
Zurück zum Zitat Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)MATH Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)MATH
10.
Zurück zum Zitat Jameson, A., Schmidt, W., Turkel, E.L.I.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. In: 14th Fluid and Plasma Dynamics Conference, AIAA 1981-1259 (1981) Jameson, A., Schmidt, W., Turkel, E.L.I.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. In: 14th Fluid and Plasma Dynamics Conference, AIAA 1981-1259 (1981)
11.
Zurück zum Zitat Carpenter, M.H., Kennedy, C.A.: Fourth-order 2N-storage Runge–Kutta schemes. In: Technical Report TM 109112 NASA Langley Research Center (1994) Carpenter, M.H., Kennedy, C.A.: Fourth-order 2N-storage Runge–Kutta schemes. In: Technical Report TM 109112 NASA Langley Research Center (1994)
12.
Zurück zum Zitat Gottlieb, S., Grant, Z., Higgs, D.: Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order. Math. Comput. 84, 2743–2761 (2015)MathSciNetMATH Gottlieb, S., Grant, Z., Higgs, D.: Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order. Math. Comput. 84, 2743–2761 (2015)MathSciNetMATH
13.
Zurück zum Zitat Huynh, H.T.: A reconstruction approach to high-order schemnes including discontinuous Galerkin for diffusion. In: 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, AIAA 2009-0403 (2009) Huynh, H.T.: A reconstruction approach to high-order schemnes including discontinuous Galerkin for diffusion. In: 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, AIAA 2009-0403 (2009)
14.
Zurück zum Zitat Jameson, A.: A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45, 348–358 (2010)MathSciNetMATH Jameson, A.: A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45, 348–358 (2010)MathSciNetMATH
15.
Zurück zum Zitat Castonguay, P., Willians, D.M., Vincent, P.E., Jameson, A.: Energy stable flux reconstruction schemes for advection–diffusion problems. Comput. Methods Appl. Mech. Eng. 267, 400–417 (2013)MathSciNetMATH Castonguay, P., Willians, D.M., Vincent, P.E., Jameson, A.: Energy stable flux reconstruction schemes for advection–diffusion problems. Comput. Methods Appl. Mech. Eng. 267, 400–417 (2013)MathSciNetMATH
16.
Zurück zum Zitat Castonguay, P., Vincent, P.E., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes for triangular elements. J. Sci. Comput. 51, 224–256 (2011)MathSciNetMATH Castonguay, P., Vincent, P.E., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes for triangular elements. J. Sci. Comput. 51, 224–256 (2011)MathSciNetMATH
17.
Zurück zum Zitat Williams, D.M., Castonguay, P., Vincent, P.E., Jameson, A.: Energy stable flux reconstruction schemes for advection–diffusion problems on triangles. J. Comput. Phys. 250, 53–76 (2013)MathSciNetMATH Williams, D.M., Castonguay, P., Vincent, P.E., Jameson, A.: Energy stable flux reconstruction schemes for advection–diffusion problems on triangles. J. Comput. Phys. 250, 53–76 (2013)MathSciNetMATH
18.
Zurück zum Zitat Sheshadri, A., Jameson, A.: On the stability of the flux reconstruction schemes on quadrilateral elements for the linear advection equation. J. Sci. Comput. 67, 769–790 (2015)MathSciNetMATH Sheshadri, A., Jameson, A.: On the stability of the flux reconstruction schemes on quadrilateral elements for the linear advection equation. J. Sci. Comput. 67, 769–790 (2015)MathSciNetMATH
19.
Zurück zum Zitat Vincent, P.E., Castonguay, P., Jameson, A.: Insights from von Neumann analysis of high-order flux reconstruction schemes. J. Comput. Phys. 230, 8134–8154 (2011)MathSciNetMATH Vincent, P.E., Castonguay, P., Jameson, A.: Insights from von Neumann analysis of high-order flux reconstruction schemes. J. Comput. Phys. 230, 8134–8154 (2011)MathSciNetMATH
20.
Zurück zum Zitat Asthana, K., Jameson, A.: High-order flux reconstruction schemes with minimal dispersion and dissipation. J. Sci. Comput. 62, 913–944 (2015)MathSciNetMATH Asthana, K., Jameson, A.: High-order flux reconstruction schemes with minimal dispersion and dissipation. J. Sci. Comput. 62, 913–944 (2015)MathSciNetMATH
21.
Zurück zum Zitat Vermeire, B.C., Vincent, P.E.: On the behaviour of fully-discrete flux reconstruction schemes. Comput. Methods Appl. Mech. Eng. 315, 1053–1079 (2017)MathSciNet Vermeire, B.C., Vincent, P.E.: On the behaviour of fully-discrete flux reconstruction schemes. Comput. Methods Appl. Mech. Eng. 315, 1053–1079 (2017)MathSciNet
22.
Zurück zum Zitat Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016)MathSciNetMATH Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016)MathSciNetMATH
23.
Zurück zum Zitat Alhawwary, M., Wang, Z.J.: Fourier analysis and evaluation of DG, FD and compact difference methods for conservation laws. J. Comput. Phys. 373, 835–862 (2018)MathSciNetMATH Alhawwary, M., Wang, Z.J.: Fourier analysis and evaluation of DG, FD and compact difference methods for conservation laws. J. Comput. Phys. 373, 835–862 (2018)MathSciNetMATH
24.
Zurück zum Zitat Crean, J., Hicken, J.E., Fernández, D.C.D.R., Zingg, D.W., Carpenter, M.H.: Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. J. Comput. Phys. 356, 410–438 (2018)MathSciNetMATH Crean, J., Hicken, J.E., Fernández, D.C.D.R., Zingg, D.W., Carpenter, M.H.: Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. J. Comput. Phys. 356, 410–438 (2018)MathSciNetMATH
25.
Zurück zum Zitat Ranocha, H., Glaubitz, J., Öffner, P., Sonar, T.: Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators. Appl. Numer. Math. 128, 1–23 (2018)MathSciNetMATH Ranocha, H., Glaubitz, J., Öffner, P., Sonar, T.: Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators. Appl. Numer. Math. 128, 1–23 (2018)MathSciNetMATH
26.
Zurück zum Zitat Vermeire, B.C., Vincent, P.E.: On the properties of energy stable flux reconstruction schemes for implicit large Eddy simulation. J. Comput. Phys. 327, 368–388 (2016)MathSciNetMATH Vermeire, B.C., Vincent, P.E.: On the properties of energy stable flux reconstruction schemes for implicit large Eddy simulation. J. Comput. Phys. 327, 368–388 (2016)MathSciNetMATH
27.
Zurück zum Zitat Qiu, J.X., Shu, C.W.: Finite difference WENO schemes with Lax–Wendroff-type time discretizations. SIAM J. Sci. Comput. 24, 2185–2198 (2003)MathSciNetMATH Qiu, J.X., Shu, C.W.: Finite difference WENO schemes with Lax–Wendroff-type time discretizations. SIAM J. Sci. Comput. 24, 2185–2198 (2003)MathSciNetMATH
28.
Zurück zum Zitat Jiang, Y., Shu, C.W., Zhang, M.P.: An alternative formulation of finite difference weighted ENO schemes with Lax–Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35, A1137–A1160 (2013)MathSciNetMATH Jiang, Y., Shu, C.W., Zhang, M.P.: An alternative formulation of finite difference weighted ENO schemes with Lax–Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35, A1137–A1160 (2013)MathSciNetMATH
29.
Zurück zum Zitat Zorío, D., Baeza, A., Mulet, P.: An approximate Lax–Wendroff-type procedure for high order accurate schemes for hyperbolic conservation laws. J. Sci. Comput. 71, 246–273 (2016)MathSciNetMATH Zorío, D., Baeza, A., Mulet, P.: An approximate Lax–Wendroff-type procedure for high order accurate schemes for hyperbolic conservation laws. J. Sci. Comput. 71, 246–273 (2016)MathSciNetMATH
30.
Zurück zum Zitat Qiu, J.X., Dumbser, M., Shu, C.W.: The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194, 4528–4543 (2005)MathSciNetMATH Qiu, J.X., Dumbser, M., Shu, C.W.: The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194, 4528–4543 (2005)MathSciNetMATH
31.
Zurück zum Zitat Guo, W., Qiu, J.M., Qiu, J.X.: A New Lax–Wendroff discontinuous Galerkin method with superconvergence. J. Sci. Comput. 65, 299–326 (2014)MathSciNetMATH Guo, W., Qiu, J.M., Qiu, J.X.: A New Lax–Wendroff discontinuous Galerkin method with superconvergence. J. Sci. Comput. 65, 299–326 (2014)MathSciNetMATH
32.
Zurück zum Zitat Bürger, R., Kenettinkara, S.K., Zorío, D.: Approximate Lax–Wendroff discontinuous Galerkin methods for hyperbolic conservation laws. Comput. Math Appl. 74, 1288–1310 (2017)MathSciNetMATH Bürger, R., Kenettinkara, S.K., Zorío, D.: Approximate Lax–Wendroff discontinuous Galerkin methods for hyperbolic conservation laws. Comput. Math Appl. 74, 1288–1310 (2017)MathSciNetMATH
33.
Zurück zum Zitat Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17, 609–618 (2002)MathSciNetMATH Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17, 609–618 (2002)MathSciNetMATH
34.
Zurück zum Zitat Mani, A., Larsson, J., Moin, P.: Suitability of artificial bulk viscosity for large-eddy simulation of turbulent flows with shocks. J. Comput. Phys. 228, 7368–7374 (2009)MATH Mani, A., Larsson, J., Moin, P.: Suitability of artificial bulk viscosity for large-eddy simulation of turbulent flows with shocks. J. Comput. Phys. 228, 7368–7374 (2009)MATH
35.
Zurück zum Zitat Haga, T., Kawai, S.: On a robust and accurate localized artificial diffusivity scheme for the high-order flux-reconstruction method. J. Comput. Phys. 376, 534–563 (2019)MathSciNetMATH Haga, T., Kawai, S.: On a robust and accurate localized artificial diffusivity scheme for the high-order flux-reconstruction method. J. Comput. Phys. 376, 534–563 (2019)MathSciNetMATH
36.
Zurück zum Zitat Fiorina, B., Lele, S.K.: An artificial nonlinear diffusivity method for supersonic reacting flows with shocks. J. Comput. Phys. 222, 246–264 (2007)MathSciNetMATH Fiorina, B., Lele, S.K.: An artificial nonlinear diffusivity method for supersonic reacting flows with shocks. J. Comput. Phys. 222, 246–264 (2007)MathSciNetMATH
37.
Zurück zum Zitat Deng, X., Jiang, Z.H., Xiao, F., Yan, C.: Implicit large eddy simulation of compressible turbulence flow with PnTm–BVD scheme. Appl. Math. Model. 77, 17–31 (2020)MathSciNet Deng, X., Jiang, Z.H., Xiao, F., Yan, C.: Implicit large eddy simulation of compressible turbulence flow with PnTm–BVD scheme. Appl. Math. Model. 77, 17–31 (2020)MathSciNet
38.
Zurück zum Zitat Shu, C.W.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49, 105–121 (1987)MathSciNetMATH Shu, C.W.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49, 105–121 (1987)MathSciNetMATH
39.
Zurück zum Zitat Qiu, J.X., Shu, C.W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)MathSciNetMATH Qiu, J.X., Shu, C.W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)MathSciNetMATH
40.
Zurück zum Zitat Zhong, X.H., Shu, C.W.: A simple weighted essentially nonoscillatory limiter for Runge–Kutta discontinuous Galerkin methods. J. Comput. Phys. 232, 397–415 (2013)MathSciNet Zhong, X.H., Shu, C.W.: A simple weighted essentially nonoscillatory limiter for Runge–Kutta discontinuous Galerkin methods. J. Comput. Phys. 232, 397–415 (2013)MathSciNet
41.
Zurück zum Zitat Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids Basic formulation. J. Comput. Phys. 178, 210–251 (2002)MathSciNetMATH Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids Basic formulation. J. Comput. Phys. 178, 210–251 (2002)MathSciNetMATH
42.
Zurück zum Zitat Abeele, K.V.D., Lacor, C., Wang, Z.J.: On the connection between the spectral volume and the spectral difference method. J. Comput. Phys. 227, 877–885 (2007)MathSciNetMATH Abeele, K.V.D., Lacor, C., Wang, Z.J.: On the connection between the spectral volume and the spectral difference method. J. Comput. Phys. 227, 877–885 (2007)MathSciNetMATH
43.
Zurück zum Zitat Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)MathSciNetMATH Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)MathSciNetMATH
44.
Zurück zum Zitat Chen, S.S., Yan, C., Lin, B.X., Liu, L.Y., Yu, J.: Affordable shock-stable item for Godunov-type schemes against carbuncle phenomenon. J. Comput. Phys. 373, 662–672 (2018)MathSciNetMATH Chen, S.S., Yan, C., Lin, B.X., Liu, L.Y., Yu, J.: Affordable shock-stable item for Godunov-type schemes against carbuncle phenomenon. J. Comput. Phys. 373, 662–672 (2018)MathSciNetMATH
45.
Zurück zum Zitat Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)MathSciNetMATH Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)MathSciNetMATH
46.
Zurück zum Zitat Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)MathSciNetMATH Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)MathSciNetMATH
47.
Zurück zum Zitat Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (2009)MATH Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (2009)MATH
48.
Zurück zum Zitat Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83, 32–78 (1989)MathSciNetMATH Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83, 32–78 (1989)MathSciNetMATH
49.
Zurück zum Zitat Zhang, T., Zheng, Y.X.: Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems. SIAM J. Math. Anal. 21, 593–630 (1990)MathSciNetMATH Zhang, T., Zheng, Y.X.: Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems. SIAM J. Math. Anal. 21, 593–630 (1990)MathSciNetMATH
50.
Zurück zum Zitat Lax, P.D., Liu, X.D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19, 319–340 (1998)MathSciNetMATH Lax, P.D., Liu, X.D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19, 319–340 (1998)MathSciNetMATH
51.
Zurück zum Zitat Don, W.S., Gao, Z., Li, P., Wen, X.: Hybrid compact-WENO finite difference scheme with conjugate fourier shock detection algorithm for hyperbolic conservation laws. SIAM J. Sci. Comput. 38, 691–711 (2016)MathSciNetMATH Don, W.S., Gao, Z., Li, P., Wen, X.: Hybrid compact-WENO finite difference scheme with conjugate fourier shock detection algorithm for hyperbolic conservation laws. SIAM J. Sci. Comput. 38, 691–711 (2016)MathSciNetMATH
52.
Zurück zum Zitat Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)MathSciNetMATH Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)MathSciNetMATH
53.
Zurück zum Zitat Abbassi, H., Mashayek, F., Jacobs, G.B.: Shock capturing with entropy-based artificial viscosity for staggered grid discontinuous spectral element method. Comput. Fluids 98, 152–163 (2014)MathSciNetMATH Abbassi, H., Mashayek, F., Jacobs, G.B.: Shock capturing with entropy-based artificial viscosity for staggered grid discontinuous spectral element method. Comput. Fluids 98, 152–163 (2014)MathSciNetMATH
Metadaten
Titel
The Flux Reconstruction Method with Lax–Wendroff Type Temporal Discretization for Hyperbolic Conservation Laws
verfasst von
Shuai Lou
Chao Yan
Li-Bin Ma
Zhen-Hua Jiang
Publikationsdatum
01.02.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01146-8

Weitere Artikel der Ausgabe 2/2020

Journal of Scientific Computing 2/2020 Zur Ausgabe