Skip to main content

1996 | OriginalPaper | Buchkapitel

The Fourier Transform in R k

verfasst von : Michel Simonnet

Erschienen in: Measures and Probabilities

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

14.1 In this section, we give some necessary and sufficient conditions for a quasi-measure, defined on the natural semiring of a nonempty open subset of Rk, to be a measure (Propositions 14.1.1 to 14.1.3).14.2 In Rk, the distribution function of a probability defined on the Borel σ-algebra is $$F:\left({{x_1}, \cdots {x_k}} \right) \mapsto P\left({\prod\nolimits_{1 \leqslant i \leqslant k} {\left] { - \infty, {x_i}} \right]}} \right)$$. A sequence of probabilities P n with distribution functions F n converges weakly to a probability P with distribution function F if and only if F n (x) converges to F(x) at every point of continuity of F.14.3 In this section, we define the covariance matrix of a positive measure of order 2 and the normal distribution N(m, σ2).14.4 Let μ be a bounded measure on the Borel σ-algebra of Rk. The Fourier transform of μ is the function ℱμ: x ↦ ∫exp(−2πixy)dμ(y). The function ℱμ is uniformly continuous and bounded (Proposition 14.4.1). Moreover, the Fourier transform is injective (Theorem 14.4.1). We next prove the Riemann—Lebesgue lemma: the Fourier transform of an integrable function vanishes at infinity. Finally, we prove the inversion theorem for bounded measures and two convergence theorems of fundamental importance in the theory of probability.14.5 This section is devoted to a short study of the normal laws in Rk.

Metadaten
Titel
The Fourier Transform in R k
verfasst von
Michel Simonnet
Copyright-Jahr
1996
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4612-4012-9_14