Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

21.04.2016 | Original Article | Ausgabe 5/2017

International Journal of Machine Learning and Cybernetics 5/2017

The further investigation of variable precision intuitionistic fuzzy rough set model

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 5/2017
Autoren:
Zengtai Gong, Xiaoxia Zhang
Wichtige Hinweise
This work is supported by National Natural Science Fund of China (61262022, 71061013), Fundamental Research Funds for the Central Universities Support Program (2015xs71).

Abstract

By applying weighted aggregation operator, we firstly define the similarity measure between two intuitionistic fuzzy sets, and we prove that it is also a \(\mathcal {T}\)-equivalence intuitionistic fuzzy relation which is called weighted \(\mathcal {T}\)-equivalence intuitionistic fuzzy relation. However, different attributes have different significance, to measure the importance of each attribute, in this article, we use variable precision intuitionistic fuzzy rough set(VPIFRS) to process the data in decision table and obtain the weight of each condition attribute. Thus, a new \(\mathcal {T}\)-equivalence intuitionistic fuzzy partition is obtained based on the weighted \(\mathcal {T}\)-equivalence intuitionistic fuzzy relation and the weight set of condition attribute, it shows that this partition is more suitable and less sensitive to perturbation. Subsequently, to determine a rational change interval for threshold \(\alpha ,\) we investigate the \(\alpha\)-stable intervals. Simultaneously, we discuss the two types uncertainty of VPIFRS theory, and show that it can be characterized by information entropy and the rough degree. Finally, an example is given to illustrate our results, which show that our method is more feasible and less sensitive to perturbation and misclassification.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2017

International Journal of Machine Learning and Cybernetics 5/2017 Zur Ausgabe