Skip to main content

2014 | OriginalPaper | Buchkapitel

2. The Geometry of Compressed Sensing

verfasst von : Thomas Blumensath

Erschienen in: Compressed Sensing & Sparse Filtering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most developments in compressed sensing have revolved around the exploitation of signal structures that can be expressed and understood most easily using a geometrical interpretation. This geometric point of view not only underlies many of the initial theoretical developments on which much of the theory of compressed sensing is built, but has also allowed ideas to be extended to much more general recovery problems and structures. A unifying framework is that of non-convex, low-dimensional constraint sets in which the signal to be recovered is assumed to reside. The sparse signal structure of traditional compressed sensing translates into a union of low dimensional subspaces, each subspace being spanned by a small number of the coordinate axes. The union of subspaces interpretation is readily generalised and many other recovery problems can be seen to fall into this setting. For example, instead of vector data, in many problems, data is more naturally expressed in matrix form (for example a video is often best represented in a pixel by time matrix). A powerful constraint on matrices are constraints on the matrix rank. For example, in low-rank matrix recovery, the goal is to reconstruct a low-rank matrix given only a subset of its entries. Importantly, low-rank matrices also lie in a union of subspaces structure, although now, there are infinitely many subspaces (though each of these is finite dimensional). Many other examples of union of subspaces signal models appear in applications, including sparse wavelet-tree structures (which form a subset of the general sparse model) and finite rate of innovations models, where we can have infinitely many infinite dimensional subspaces. In this chapter, I will provide an introduction to these and related geometrical concepts and will show how they can be used to (a) develop algorithms to recover signals with given structures and (b) allow theoretical results that characterise the performance of these algorithmic approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In this chapter, we use two, somewhat different, meanings for the term vector. On the one hand, we call any one dimensional array of real or complex numbers a vector, this is the meaning used here. Below, we will introduce a more abstract definition of vectors as elements of some mathematical space. Which of these two definitions is appropriate at any one point in this chapter should be clear from the context.
 
2
A subset \(\mathcal{S }\subset \mathcal{H }\) is called closed if every sequence with elements in \(\mathcal{S }\) that converges to an element of \(\mathcal{H }\) has a limit in the subset \(\mathcal{S }\) itself.
 
3
That is, a signal whose Fourier transform \(\mathcal{X }(f)\) is assumed to be zero apart from the set \(S\subset [-B_N,\ B_N]\).
 
4
We assume here that we use the norm \(\sqrt{\sum x_i^2}\), though other Euclidean norms are treated with equal ease.
 
5
Note that for \(\delta <\frac{\Vert P_\mathcal{S }(\mathbf{x })\Vert }{\Vert \widetilde{\mathbf{e }}\Vert }\) and for \(\mu \) and \(\alpha \) as in the theorem, both, the numerator and the denominator in the iteration count are negative numbers, so that a decrease in delta leads to an increase in the required number of iterations. If we were to choose \(\delta \) such that the numerator becomes positive, we would get a negative number of iterations. This has to be interpreted as meaning that we actually don’t need to run the algorithm at all, as the associated estimate error is already achieved by the estimate \({\hat{\mathbf{x }}}=\mathbf{x }^0=\mathbf{0 }\).
 
Literatur
1.
Zurück zum Zitat Nyquist H (1928) Certain topics in telegraph transmission theory. Trans AIEE 47:617–644 Nyquist H (1928) Certain topics in telegraph transmission theory. Trans AIEE 47:617–644
2.
Zurück zum Zitat Shannon CA, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana Shannon CA, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana
3.
Zurück zum Zitat Donoho DL (2006) For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829MathSciNetCrossRefMATH Donoho DL (2006) For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829MathSciNetCrossRefMATH
4.
Zurück zum Zitat Candès E, Romberg J (2006) Quantitative robust uncertainty principles and optimally sparse decompositions. Found Comput Math 6(2):227–254MathSciNetCrossRefMATH Candès E, Romberg J (2006) Quantitative robust uncertainty principles and optimally sparse decompositions. Found Comput Math 6(2):227–254MathSciNetCrossRefMATH
5.
Zurück zum Zitat Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52(2):489–509MathSciNetCrossRefMATH Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52(2):489–509MathSciNetCrossRefMATH
6.
Zurück zum Zitat Candès E, Romberg J, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math 59(8):1207–1223CrossRefMATH Candès E, Romberg J, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math 59(8):1207–1223CrossRefMATH
7.
Zurück zum Zitat Abernethy J, Bach F, Evgeniou T, Vert J-P (2006) Low-rank matrix factorization with attributes. arxiv:0611124v1 Abernethy J, Bach F, Evgeniou T, Vert J-P (2006) Low-rank matrix factorization with attributes. arxiv:0611124v1
8.
Zurück zum Zitat Recht B, Fazel M, Parrilo PA (2009) Guaranteed minimum-rank solution of linear matrix equations via nuclear norm minimization. Found Comput Math 9:717–772MathSciNetCrossRefMATH Recht B, Fazel M, Parrilo PA (2009) Guaranteed minimum-rank solution of linear matrix equations via nuclear norm minimization. Found Comput Math 9:717–772MathSciNetCrossRefMATH
9.
Zurück zum Zitat Blumensath T (2010) Sampling and reconstructing signals from a union of linear subspaces. IEEE Trans Inf Theory 57(7):4660–4671 Blumensath T (2010) Sampling and reconstructing signals from a union of linear subspaces. IEEE Trans Inf Theory 57(7):4660–4671
10.
Zurück zum Zitat Rudin W (1976) Principles of mathematical analysis, 3rd edn. McGraw-Hill Higher Education, New York Rudin W (1976) Principles of mathematical analysis, 3rd edn. McGraw-Hill Higher Education, New York
11.
Zurück zum Zitat Conway JB (1990) A course in functional analysis. Graduate texts in mathematics, 2nd edn. Springer, Berlin Conway JB (1990) A course in functional analysis. Graduate texts in mathematics, 2nd edn. Springer, Berlin
12.
Zurück zum Zitat Unser M (2000) Sampling-50 years after Shannon. Proc IEEE 88(4):569–587CrossRef Unser M (2000) Sampling-50 years after Shannon. Proc IEEE 88(4):569–587CrossRef
13.
Zurück zum Zitat Landau HJ (1967) Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math 117:37–52MathSciNetCrossRefMATH Landau HJ (1967) Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math 117:37–52MathSciNetCrossRefMATH
14.
Zurück zum Zitat Mishali M, Eldar YC (2009) Blind multi-band signal reconstruction: compressed sensing for analog signals. IEEE Trans Signal Process 57(3):993–1009MathSciNetCrossRef Mishali M, Eldar YC (2009) Blind multi-band signal reconstruction: compressed sensing for analog signals. IEEE Trans Signal Process 57(3):993–1009MathSciNetCrossRef
15.
Zurück zum Zitat Vetterli M, Marziliano P, Blu T (2002) Sampling signals with finite rate of innovation. IEEE Trans Signal Process 50(6):1417–1428MathSciNetCrossRef Vetterli M, Marziliano P, Blu T (2002) Sampling signals with finite rate of innovation. IEEE Trans Signal Process 50(6):1417–1428MathSciNetCrossRef
16.
Zurück zum Zitat Xu W, Hassibi B (to appear) Compressive sensing over the grassmann manifold: a unified geometric framework. IEEE Trans Inf Theory Xu W, Hassibi B (to appear) Compressive sensing over the grassmann manifold: a unified geometric framework. IEEE Trans Inf Theory
17.
Zurück zum Zitat Cands EJ (2006) The restricted isometry property and its implications for compressed sensing. Compte Rendus de l’Academie des Sciences, Serie I(346):589–592 Cands EJ (2006) The restricted isometry property and its implications for compressed sensing. Compte Rendus de l’Academie des Sciences, Serie I(346):589–592
18.
Zurück zum Zitat Donoho DL (2006) High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discrete Comput Geom 35(4):617–652MathSciNetCrossRefMATH Donoho DL (2006) High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discrete Comput Geom 35(4):617–652MathSciNetCrossRefMATH
20.
Zurück zum Zitat Gruenbaum B (2003) Convex polytopes. Graduate texts in mathematics, vol 221, 2nd edn. Springer-Verlag, New York Gruenbaum B (2003) Convex polytopes. Graduate texts in mathematics, vol 221, 2nd edn. Springer-Verlag, New York
21.
22.
23.
Zurück zum Zitat Qui K, Dogandzic A (2010) ECME thresholding methods for sparse signal reconstruction. arXiv:1004.4880v3 Qui K, Dogandzic A (2010) ECME thresholding methods for sparse signal reconstruction. arXiv:1004.4880v3
24.
Zurück zum Zitat Cevher V, (2011) On accelerated hard thresholding methods for sparse approximation. EPFL Technical Report, February 17, 2011 Cevher V, (2011) On accelerated hard thresholding methods for sparse approximation. EPFL Technical Report, February 17, 2011
25.
Zurück zum Zitat Baraniuk RG (1999) Optimal tree approximation with wavelets. Wavelet Appl Sig Image Process VII 3813:196–207CrossRef Baraniuk RG (1999) Optimal tree approximation with wavelets. Wavelet Appl Sig Image Process VII 3813:196–207CrossRef
26.
Zurück zum Zitat Goldfarb D, Ma S (2010) Convergence of fixed point continuation algorithms for matrix rank minimization. arXiv:09063499v3 Goldfarb D, Ma S (2010) Convergence of fixed point continuation algorithms for matrix rank minimization. arXiv:09063499v3
27.
Zurück zum Zitat Needell D, Tropp JA (2008) CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal 26(3):301–321MathSciNetCrossRef Needell D, Tropp JA (2008) CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal 26(3):301–321MathSciNetCrossRef
29.
Zurück zum Zitat Rudin W (1966) Real and complex analysis, McGraw-Hill, New York Rudin W (1966) Real and complex analysis, McGraw-Hill, New York
30.
Zurück zum Zitat Negahban S, Ravikumar P, Wainwright MJ, Yu B (2009) A unified framework for the analysis of regularized M-estimators. Advances in neural information processing systems, Vancouver, Canada Negahban S, Ravikumar P, Wainwright MJ, Yu B (2009) A unified framework for the analysis of regularized M-estimators. Advances in neural information processing systems, Vancouver, Canada
31.
Zurück zum Zitat Bahmani S, Raj B, Boufounos P (2012) Greedy sparsity-constrained optimization. arXiv:1203.5483v1 Bahmani S, Raj B, Boufounos P (2012) Greedy sparsity-constrained optimization. arXiv:1203.5483v1
32.
Zurück zum Zitat Blumensath T (2012) Compressed sensing with nonlinear observations and related nonlinear optimisation problems. arXiv:1205.1650v1 Blumensath T (2012) Compressed sensing with nonlinear observations and related nonlinear optimisation problems. arXiv:1205.1650v1
Metadaten
Titel
The Geometry of Compressed Sensing
verfasst von
Thomas Blumensath
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-38398-4_2

Neuer Inhalt