Skip to main content

2012 | OriginalPaper | Buchkapitel

13. The Height of the Atmospheric Planetary Boundary layer: State of the Art and New Development

verfasst von : Sergej S. Zilitinkevich

Erschienen in: National Security and Human Health Implications of Climate Change

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The planetary boundary layer (PBL) is defined as the strongly turbulent atmospheric layer immediately affected by dynamic, thermal and other interactions with the Earth’s surface. It essentially differs in nature from the weakly turbulent and persistently stably-stratified free atmosphere. To some extent the PBL upper boundary acts as a lid preventing dust, aerosols, gases and any other admixtures released from ground sources to efficiently penetrate upwards, thus blocking them within the PBL. It is conceivable that the air pollution is especially hazardous when associated with shallow PBLs. Likewise, positive or negative perturbations of the heat budget at the Earth’s surface immediately impact on the PBL and are almost completely absorbed within the PBL through the very efficient mechanism of turbulent heat transfer. Determination of the PBL height is, therefore, an important aspect of modelling and prediction of air-pollution events and extreme colds or heats dangerous for human health. Because of high sensitivity of shallow PBLs to thermal impacts, variability of the PBL height is an important factor controlling fine features of climate change. Deep convective PBLs strongly impact on the climate system through turbulent entrainment (“ventilation”) at the PBL upper boundary, and thus essentially control development of convective clouds. This paper outlines modern knowledge about physical mechanisms and theoretical models of the PBL height and turbulent entrainment, and presents an advanced model of geophysical convective PBL.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baklanov A (2002) Parameterisation of SBL height in atmospheric pollution models. In: Borrego C, Schayes G (eds) Air pollution modelling and its application XV. Kluwer Academic/Plenum Publishers, New York, pp 415–424 Baklanov A (2002) Parameterisation of SBL height in atmospheric pollution models. In: Borrego C, Schayes G (eds) Air pollution modelling and its application XV. Kluwer Academic/Plenum Publishers, New York, pp 415–424
2.
Zurück zum Zitat Batchvarova E, Gryning S-E (1991) Applied model for the growth of the daytime mixed layer. Bound-Layer Meteorol 56:261–274CrossRef Batchvarova E, Gryning S-E (1991) Applied model for the growth of the daytime mixed layer. Bound-Layer Meteorol 56:261–274CrossRef
3.
Zurück zum Zitat Betts AK (1973) Non-precipitating cumulus convection and its parameterization. Q J R Meteorol Soc 99:178–196CrossRef Betts AK (1973) Non-precipitating cumulus convection and its parameterization. Q J R Meteorol Soc 99:178–196CrossRef
4.
Zurück zum Zitat Carson DJ (1973) The development of a dry inversion-capped convectively unstable boundary layer. Q J R Meteorol Soc 99:450–467CrossRef Carson DJ (1973) The development of a dry inversion-capped convectively unstable boundary layer. Q J R Meteorol Soc 99:450–467CrossRef
5.
Zurück zum Zitat Caughey SJ, Wyngaard JC, Kaimal JC (1979) Turbulence in the evolving stable boundary layer. J Atmos Sci 6:1041–1052 Caughey SJ, Wyngaard JC, Kaimal JC (1979) Turbulence in the evolving stable boundary layer. J Atmos Sci 6:1041–1052
6.
Zurück zum Zitat Deardorff JW (1972) Parameterization of planetary boundary layer for use in general circulation models. Mon Weather Rev 2:93–106CrossRef Deardorff JW (1972) Parameterization of planetary boundary layer for use in general circulation models. Mon Weather Rev 2:93–106CrossRef
7.
Zurück zum Zitat Ekman VW (1905) On the influence of the earth’s rotation on ocean-currents. Arkiv for Matematik, Astronomi och Fysik 2(11):1–52 Ekman VW (1905) On the influence of the earth’s rotation on ocean-currents. Arkiv for Matematik, Astronomi och Fysik 2(11):1–52
8.
Zurück zum Zitat Esau I (2004) An improved parameterization of turbulent exchange coefficients accounting for the non-local effect of large eddies. Ann Geophys 22:3353–3362CrossRef Esau I (2004) An improved parameterization of turbulent exchange coefficients accounting for the non-local effect of large eddies. Ann Geophys 22:3353–3362CrossRef
9.
Zurück zum Zitat Esau I, Zilitinkevich S (2010) On the role of the planetary boundary layer depth in climate system. Adv Sci Res 4:63–69CrossRef Esau I, Zilitinkevich S (2010) On the role of the planetary boundary layer depth in climate system. Adv Sci Res 4:63–69CrossRef
10.
Zurück zum Zitat Gryning S-E, Batchvarova E (1990) Analytical model for the growth of the coastal internal boundary layer during onshore flow. Q J R Meteorol Soc 116:187–203CrossRef Gryning S-E, Batchvarova E (1990) Analytical model for the growth of the coastal internal boundary layer during onshore flow. Q J R Meteorol Soc 116:187–203CrossRef
11.
Zurück zum Zitat Holton JR (1972) An introduction to dynamic meteorology. Academic, New York/San Francisco/London, 319 pp Holton JR (1972) An introduction to dynamic meteorology. Academic, New York/San Francisco/London, 319 pp
12.
Zurück zum Zitat Knight CG, Knight SHE, Massey N, Aina T, Christensen C, Frame DJ, Kettleborough JA, Martin A, Pascoe S, Sanderson B, Stainforth DA, Allen MR (2007) Association of parameter, software and hardware variation with large scale behavior across 57,000 climate models. Proc Natl Acad Sci USA 104(30):12259–12264CrossRef Knight CG, Knight SHE, Massey N, Aina T, Christensen C, Frame DJ, Kettleborough JA, Martin A, Pascoe S, Sanderson B, Stainforth DA, Allen MR (2007) Association of parameter, software and hardware variation with large scale behavior across 57,000 climate models. Proc Natl Acad Sci USA 104(30):12259–12264CrossRef
13.
Zurück zum Zitat Nieuwstadt FTM, Van Dop H (1982) Atmospheric turbulence and air pollution modelling. Reidel, Dordrecht, pp 107–158 Nieuwstadt FTM, Van Dop H (1982) Atmospheric turbulence and air pollution modelling. Reidel, Dordrecht, pp 107–158
14.
Zurück zum Zitat Rossby CG, Montgomery RB (1935) The layer of frictional influence in wind and ocean currents. Pap Phys Oceanogr Meteorol MIT Woods Hole Oceanogr Inst 3(3):1–101 Rossby CG, Montgomery RB (1935) The layer of frictional influence in wind and ocean currents. Pap Phys Oceanogr Meteorol MIT Woods Hole Oceanogr Inst 3(3):1–101
15.
Zurück zum Zitat Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier Ph (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027CrossRef Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier Ph (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027CrossRef
16.
Zurück zum Zitat Stull R (1976) Mixed-layer depth model based on turbulent energetics. J Atmos Sci 33:1268–1278CrossRef Stull R (1976) Mixed-layer depth model based on turbulent energetics. J Atmos Sci 33:1268–1278CrossRef
17.
Zurück zum Zitat Tennekes H (1973) A model of the dynamics of the inversion above a convective boundary layer. J Atmos Sci 30:558–567CrossRef Tennekes H (1973) A model of the dynamics of the inversion above a convective boundary layer. J Atmos Sci 30:558–567CrossRef
18.
Zurück zum Zitat Zilitinkevich SS (1972) On the determination of the height of the Ekman boundary layer. Bound-Layer Meteorol 3:141–145CrossRef Zilitinkevich SS (1972) On the determination of the height of the Ekman boundary layer. Bound-Layer Meteorol 3:141–145CrossRef
19.
Zurück zum Zitat Zilitinkevich SS (1991) Turbulent penetrative convection. Avebury Technical, Aldershot, 179 pp Zilitinkevich SS (1991) Turbulent penetrative convection. Avebury Technical, Aldershot, 179 pp
20.
Zurück zum Zitat Zilitinkevich SS (1987) Theoretical model of turbulent penetrative convection. Izvestija AN SSSR, FAO 23(6):593–610 Zilitinkevich SS (1987) Theoretical model of turbulent penetrative convection. Izvestija AN SSSR, FAO 23(6):593–610
21.
Zurück zum Zitat Zilitinkevich S, Calanca P (2000) An extended similarity-theory for the stably stratified atmospheric surface layer. Q J R Meteorol Soc 126:1913–1923CrossRef Zilitinkevich S, Calanca P (2000) An extended similarity-theory for the stably stratified atmospheric surface layer. Q J R Meteorol Soc 126:1913–1923CrossRef
22.
Zurück zum Zitat Zilitinkevich S (2002) Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer. Q J R Meteorol Soc 128:913–925CrossRef Zilitinkevich S (2002) Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer. Q J R Meteorol Soc 128:913–925CrossRef
23.
Zurück zum Zitat Zilitinkevich S, Baklanov A, Rost J, Smedman A-S, Lykosov V, Calanca P (2002) Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. Q J R Met Soc 128:25–46CrossRef Zilitinkevich S, Baklanov A, Rost J, Smedman A-S, Lykosov V, Calanca P (2002) Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. Q J R Met Soc 128:25–46CrossRef
24.
Zurück zum Zitat Zilitinkevich SS, Baklanov A (2002) Calculation of the height of stable boundary layers in practical applications. Bound-Layer Meteorol 105:389–409CrossRef Zilitinkevich SS, Baklanov A (2002) Calculation of the height of stable boundary layers in practical applications. Bound-Layer Meteorol 105:389–409CrossRef
25.
Zurück zum Zitat Zilitinkevich SS, Esau IN (2002) On integral measures of the neutral, barotropic planetary boundary layers. Bound-Layer Meteorol 104:371–379CrossRef Zilitinkevich SS, Esau IN (2002) On integral measures of the neutral, barotropic planetary boundary layers. Bound-Layer Meteorol 104:371–379CrossRef
26.
Zurück zum Zitat Zilitinkevich SS, Esau IN (2003) The effect of baroclinicity on the depth of neutral and stable planetary boundary layers. Q J R Meteorol Soc 129:3339–3356CrossRef Zilitinkevich SS, Esau IN (2003) The effect of baroclinicity on the depth of neutral and stable planetary boundary layers. Q J R Meteorol Soc 129:3339–3356CrossRef
27.
Zurück zum Zitat Zilitinkevich SS, Esau I (2005) Resistance and heat transfer laws for stable and neutral planetary boundary layers: old theory, advanced and re-evaluated. Q J R Meteorol Soc 131:1863–1892CrossRef Zilitinkevich SS, Esau I (2005) Resistance and heat transfer laws for stable and neutral planetary boundary layers: old theory, advanced and re-evaluated. Q J R Meteorol Soc 131:1863–1892CrossRef
28.
Zurück zum Zitat Zilitinkevich SS, Esau IN (2009) Planetary boundary layer feedbacks in climate system and triggering global warming in the night, in winter and at high latitudes. Geogr Environ Sustain 1(2):20–34 Zilitinkevich SS, Esau IN (2009) Planetary boundary layer feedbacks in climate system and triggering global warming in the night, in winter and at high latitudes. Geogr Environ Sustain 1(2):20–34
29.
Zurück zum Zitat Zilitinkevich S, Esau I, Baklanov A (2007) Further comments on the equilibrium height of neutral and stable planetary boundary layers. Q J R Meterol Soc 133:265–271CrossRef Zilitinkevich S, Esau I, Baklanov A (2007) Further comments on the equilibrium height of neutral and stable planetary boundary layers. Q J R Meterol Soc 133:265–271CrossRef
30.
Zurück zum Zitat Zubov NN (1945) Arctic ice. Glavsevmorput Press, Moscow, 360 pp Zubov NN (1945) Arctic ice. Glavsevmorput Press, Moscow, 360 pp
Metadaten
Titel
The Height of the Atmospheric Planetary Boundary layer: State of the Art and New Development
verfasst von
Sergej S. Zilitinkevich
Copyright-Jahr
2012
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-2430-3_13