Skip to main content

2013 | OriginalPaper | Buchkapitel

6. The Importance of Water

verfasst von : Philip Ball

Erschienen in: Astrochemistry and Astrobiology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

All life on Earth needs water to survive, and special strategies are needed to cope with water scarcity, for instance because of extremes of either heat or cold. This situation has promoted the common view that water is a prerequisite for life in the universe as a whole, with important consequences for predictions about the likelihood of habitable environments. But we cannot assess that claim until we have a thorough understanding of the part that water does play in sustaining terrestrial life. In this chapter I will review the case for considering water to be a versatile, adaptive component of the cell that engages in a wide range of biomolecular interactions: for example, mediating protein-protein and receptor-substrate interactions, facilitating proton transport, driving hydrophobic interactions and their sensitivity to small solutes, acting as a reagent in biochemical reactions, and modulating electronic excitation energies. The chapter will aim to provide some basis for assessing water’s often-alleged uniqueness as life’s solvent. I conclude that, while we cannot with any confidence assert that all life must be aqueous, it is hard to identify any other solvent that could match the versatility and in particular the responsiveness of water in mediating the kind of molecular interactions likely to be required in any living system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Henderson L (1913) The fitness of the environment. Macmillan, New York Henderson L (1913) The fitness of the environment. Macmillan, New York
2.
Zurück zum Zitat Ferber D (2004) Microbes made to order. Science 303:158–161 Ferber D (2004) Microbes made to order. Science 303:158–161
3.
Zurück zum Zitat Chin JW, Cropp TA, Anderson JC, Zhang Z, Schultz PG (2003) An expanded eukaryotic genetic code. Science 301:964–967 Chin JW, Cropp TA, Anderson JC, Zhang Z, Schultz PG (2003) An expanded eukaryotic genetic code. Science 301:964–967
4.
Zurück zum Zitat Kool ET (2002) Replacing the nucleobases in DNA with designer molecules. Acc Chem Res 35:936–943 Kool ET (2002) Replacing the nucleobases in DNA with designer molecules. Acc Chem Res 35:936–943
5.
Zurück zum Zitat Ball P (2007) Water as an active constituent in cell biology. Chem Rev 108:74–108 Ball P (2007) Water as an active constituent in cell biology. Chem Rev 108:74–108
6.
Zurück zum Zitat Katz JJ, Crespi HL (1966) Deuterated organisms: cultivation and uses. Science 151:1187–1194 Katz JJ, Crespi HL (1966) Deuterated organisms: cultivation and uses. Science 151:1187–1194
7.
Zurück zum Zitat Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe? Curr Opin Chem Biol 8:672–689 Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe? Curr Opin Chem Biol 8:672–689
8.
Zurück zum Zitat Fernández A, Scott R (2003) Dehydron: a structurally encoded signal for protein interaction. Biophys J 85:1914–1928 Fernández A, Scott R (2003) Dehydron: a structurally encoded signal for protein interaction. Biophys J 85:1914–1928
9.
Zurück zum Zitat Lynden-Bell RM, Morris SC, Barrow JD, Finney JL, Harper CL (eds) (2010) Water and life. CRC Press, Boca Raton Lynden-Bell RM, Morris SC, Barrow JD, Finney JL, Harper CL (eds) (2010) Water and life. CRC Press, Boca Raton
10.
Zurück zum Zitat Franks F (2000) Water: a matrix of life. Royal Society of Chemistry, Cambridge Franks F (2000) Water: a matrix of life. Royal Society of Chemistry, Cambridge
11.
Zurück zum Zitat Wernet Ph, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Näslund LÅ, Hirsch TK, Ojamäe L, Glatzel P, Pettersson LGM, Nilsson A (2004) The structure of the first coordination shell in water. Science 304:995–999 Wernet Ph, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Näslund LÅ, Hirsch TK, Ojamäe L, Glatzel P, Pettersson LGM, Nilsson A (2004) The structure of the first coordination shell in water. Science 304:995–999
12.
Zurück zum Zitat Head-Gordon T, Johnson ME (2006) Tetrahedral structure or chains for liquid water. Proc Natl Acad Sci USA 103:7973–7977 Head-Gordon T, Johnson ME (2006) Tetrahedral structure or chains for liquid water. Proc Natl Acad Sci USA 103:7973–7977
13.
Zurück zum Zitat Luzar A, Chandler D (1996) Hydrogen-bond kinetics in liquid water. Nature 379:55–57 Luzar A, Chandler D (1996) Hydrogen-bond kinetics in liquid water. Nature 379:55–57
14.
Zurück zum Zitat Sciortino F, Geiger A, Stanley HE (1991) Effects of defects on molecular mobility in liquid water. Nature 354:218–221 Sciortino F, Geiger A, Stanley HE (1991) Effects of defects on molecular mobility in liquid water. Nature 354:218–221
15.
Zurück zum Zitat Ellis RJ, Minton AP (2003) Join the crowd. Nature 425:27–28 Ellis RJ, Minton AP (2003) Join the crowd. Nature 425:27–28
16.
Zurück zum Zitat Major RC, Houston JE, McGrath MJ, Siepmann JI, Zhu X-Y (2006) Viscous water meniscus under confinement. Phys Rev Lett 96:177803 Major RC, Houston JE, McGrath MJ, Siepmann JI, Zhu X-Y (2006) Viscous water meniscus under confinement. Phys Rev Lett 96:177803
17.
Zurück zum Zitat Li T-D, Gao J, Szoszkiewicz R, Landman U, Riedo E (2007) Structured and viscous water in subnanometer gaps. Phys Rev B 75:115415 Li T-D, Gao J, Szoszkiewicz R, Landman U, Riedo E (2007) Structured and viscous water in subnanometer gaps. Phys Rev B 75:115415
18.
Zurück zum Zitat Henderson D (ed) (1992) Fundamentals of inhomogeneous fluids. CRC Press, Boca Raton Henderson D (ed) (1992) Fundamentals of inhomogeneous fluids. CRC Press, Boca Raton
19.
Zurück zum Zitat Hassan S, Steinbach P (2011) Water-exclusion and liquid-structure forces in implicit solvation. J Phys Chem B 115:14668–14682 Hassan S, Steinbach P (2011) Water-exclusion and liquid-structure forces in implicit solvation. J Phys Chem B 115:14668–14682
20.
Zurück zum Zitat Stradner A, Sedgwick H, Cardinaux F, Poon WCK, Egelhaaf SU, Schurtenberger P (2004) Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432:492–495 Stradner A, Sedgwick H, Cardinaux F, Poon WCK, Egelhaaf SU, Schurtenberger P (2004) Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432:492–495
21.
Zurück zum Zitat Gliko O, Pan W, Katsonis P, Neumaier N, Galkin O, Weinkauf S, Velikov PG (2007) Metastable liquid clusters in super- and undersaturated protein solutions. J Phys Chem B 111:3106–3114 Gliko O, Pan W, Katsonis P, Neumaier N, Galkin O, Weinkauf S, Velikov PG (2007) Metastable liquid clusters in super- and undersaturated protein solutions. J Phys Chem B 111:3106–3114
22.
Zurück zum Zitat Pollack GH (2001) Cells, gels, and the engines of life. Ebner & Sons, Seattle Pollack GH (2001) Cells, gels, and the engines of life. Ebner & Sons, Seattle
23.
Zurück zum Zitat Chaplin M (2006) Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7:861–866 Chaplin M (2006) Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7:861–866
24.
Zurück zum Zitat Halle B, Persson E (2008) Cell water dynamics on multiple time scales. Proc Natl Acad Sci USA 105:6266–6271 Halle B, Persson E (2008) Cell water dynamics on multiple time scales. Proc Natl Acad Sci USA 105:6266–6271
25.
Zurück zum Zitat Tanford C (1980) The hydrophobic effect, 2nd edn. Wiley, New York Tanford C (1980) The hydrophobic effect, 2nd edn. Wiley, New York
26.
Zurück zum Zitat Blokzijl W, Engberts JBFN (1993) Hydrophobic effects. Opinions and facts. Angew Chem Int Ed 32:1545–1579 Blokzijl W, Engberts JBFN (1993) Hydrophobic effects. Opinions and facts. Angew Chem Int Ed 32:1545–1579
27.
Zurück zum Zitat Frank HS, Evans MW (1945) Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous solutions. J Chem Phys 13:507–532 Frank HS, Evans MW (1945) Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous solutions. J Chem Phys 13:507–532
28.
Zurück zum Zitat Kauzmann W (1969) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63 Kauzmann W (1969) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63
29.
Zurück zum Zitat Ball P (2003) How to keep dry in water. Nature 423:25–26 Ball P (2003) How to keep dry in water. Nature 423:25–26
30.
Zurück zum Zitat Lum K, Chandler D, Weeks JD (1999) Hydrophobicity at small and large length scales. J Phys Chem B 103:4570–4577 Lum K, Chandler D, Weeks JD (1999) Hydrophobicity at small and large length scales. J Phys Chem B 103:4570–4577
31.
Zurück zum Zitat Wallqvist A, Berne BJ (1995) Computer simulation of hydrophobic hydration forces on stacked plates at short range. J Phys Chem 99:2893–2899 Wallqvist A, Berne BJ (1995) Computer simulation of hydrophobic hydration forces on stacked plates at short range. J Phys Chem 99:2893–2899
32.
Zurück zum Zitat ten Wolde PR, Chandler D (2002) Drying-induced hydrophobic polymer collapse. Proc Natl Acad Sci USA 99:6539–6543 ten Wolde PR, Chandler D (2002) Drying-induced hydrophobic polymer collapse. Proc Natl Acad Sci USA 99:6539–6543
33.
Zurück zum Zitat Li ITS, Walker GC (2011) Signature of hydrophobic hydration in a single polymer. Proc Natl Acad Sci USA 108:16527–16532 Li ITS, Walker GC (2011) Signature of hydrophobic hydration in a single polymer. Proc Natl Acad Sci USA 108:16527–16532
34.
Zurück zum Zitat Liu P, Huang X, Zhou R, Berne BJ (2005) Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 437:159–162 Liu P, Huang X, Zhou R, Berne BJ (2005) Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 437:159–162
35.
Zurück zum Zitat Zhou R, Huang X, Margulis CJ, Berne BJ (2004) Hydrophobic collapse in multidomain protein folding. Science 305:1605–1609 Zhou R, Huang X, Margulis CJ, Berne BJ (2004) Hydrophobic collapse in multidomain protein folding. Science 305:1605–1609
36.
Zurück zum Zitat Hua L, Huang X, Liu P, Zhou R, Berne BJ (2007) Nanoscale dewetting transition in protein complex folding. J Phys Chem B 111:9069–9077 Hua L, Huang X, Liu P, Zhou R, Berne BJ (2007) Nanoscale dewetting transition in protein complex folding. J Phys Chem B 111:9069–9077
37.
Zurück zum Zitat Giovambattista N, Lopez CF, Rossky PJ, Debenedetti PG (2008) Hydrophobicity of protein surfaces: separating geometry from chemistry. Proc Natl Acad Sci USA 105:2274–2279 Giovambattista N, Lopez CF, Rossky PJ, Debenedetti PG (2008) Hydrophobicity of protein surfaces: separating geometry from chemistry. Proc Natl Acad Sci USA 105:2274–2279
38.
Zurück zum Zitat Patel AJ, Varrily P, Chandler D (2010) Fluctuations of water near extended hydrophobic and hydrophilic surfaces. J Phys Chem B 114:1632–1637 Patel AJ, Varrily P, Chandler D (2010) Fluctuations of water near extended hydrophobic and hydrophilic surfaces. J Phys Chem B 114:1632–1637
39.
Zurück zum Zitat Patel AJ, Varilly P, Jamadagni SN, Hagan MF, Chander D, Garde S (2012) Sitting at the edge: how biomolecules use hydrophobicity to tune their interactions and function. J Phys Chem B. doi:10.1021/jp2107523 Patel AJ, Varilly P, Jamadagni SN, Hagan MF, Chander D, Garde S (2012) Sitting at the edge: how biomolecules use hydrophobicity to tune their interactions and function. J Phys Chem B. doi:10.​1021/​jp2107523
40.
Zurück zum Zitat Onuchic JN, Luthey-Schulten Z, Wolynes PG (1997) Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem 48:545–600 Onuchic JN, Luthey-Schulten Z, Wolynes PG (1997) Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem 48:545–600
41.
Zurück zum Zitat Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890 Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890
42.
Zurück zum Zitat Zong C, Papaoian GA, Ulander J, Wolynes PG (2006) Role of topology, nonadditivity, and water-mediated interactions in predicting the structures of α/β proteins. J Am Chem Soc 128:5168–5176 Zong C, Papaoian GA, Ulander J, Wolynes PG (2006) Role of topology, nonadditivity, and water-mediated interactions in predicting the structures of α/β proteins. J Am Chem Soc 128:5168–5176
43.
Zurück zum Zitat Patel AJ, Varilly P, Jamadagni SN, Acharya H, Garde S, Chandler D (2011) Extended surfaces modulate hydrophobic interactions of neighboring solutes. Proc Natl Acad Sci USA 108:17678–17683 Patel AJ, Varilly P, Jamadagni SN, Acharya H, Garde S, Chandler D (2011) Extended surfaces modulate hydrophobic interactions of neighboring solutes. Proc Natl Acad Sci USA 108:17678–17683
44.
Zurück zum Zitat Davidovic M, Mattea C, Qvist J, Halle B (2009) Protein cold denaturation as seen from the solvent. J Am Chem Soc 131:1025–1036 Davidovic M, Mattea C, Qvist J, Halle B (2009) Protein cold denaturation as seen from the solvent. J Am Chem Soc 131:1025–1036
45.
Zurück zum Zitat Hua L, Zhou R, Thirumalai D, Berne BJ (2008) Urea denaturation by stronger dispersion interactions with proteins that water implies a 2-stage unfolding. Proc Natl Acad Sci USA 105:16928–16933 Hua L, Zhou R, Thirumalai D, Berne BJ (2008) Urea denaturation by stronger dispersion interactions with proteins that water implies a 2-stage unfolding. Proc Natl Acad Sci USA 105:16928–16933
46.
Zurück zum Zitat England JL, Pande VS, Haran G (2008) Chemical denaturants inhibit the onset of dewetting. J Am Chem Soc 130:11854–11855 England JL, Pande VS, Haran G (2008) Chemical denaturants inhibit the onset of dewetting. J Am Chem Soc 130:11854–11855
47.
Zurück zum Zitat Zangi R, Zhou R, Berne BJ (2009) Urea’s action on hydrophobic interactions. J Am Chem Soc 131:1535–1541 Zangi R, Zhou R, Berne BJ (2009) Urea’s action on hydrophobic interactions. J Am Chem Soc 131:1535–1541
48.
Zurück zum Zitat Bennion BJ, Daggett V (2003) The molecular basis for the chemical denaturation of proteins by urea. Proc Natl Acad Sci USA 100:5142–5147 Bennion BJ, Daggett V (2003) The molecular basis for the chemical denaturation of proteins by urea. Proc Natl Acad Sci USA 100:5142–5147
49.
Zurück zum Zitat Towey JJ, Soper AK, Dougan L (2011) Preference for isolated water molecules in a concentrated glycerol-water mixture. J Phys Chem B 115:7799–7807 Towey JJ, Soper AK, Dougan L (2011) Preference for isolated water molecules in a concentrated glycerol-water mixture. J Phys Chem B 115:7799–7807
50.
Zurück zum Zitat Pioliti R, Sapir L, Harries D (2009) The impact of polyols on water structure in solution: a computational study. J Phys Chem A 113:7548–7555 Pioliti R, Sapir L, Harries D (2009) The impact of polyols on water structure in solution: a computational study. J Phys Chem A 113:7548–7555
51.
Zurück zum Zitat Dougan L, Genchev GZ, Lu H, Fernández JM (2011) Probing osmolyte participation in the unfolding transition state of a protein. Proc Natl Acad Sci USA 108:9759–9764 Dougan L, Genchev GZ, Lu H, Fernández JM (2011) Probing osmolyte participation in the unfolding transition state of a protein. Proc Natl Acad Sci USA 108:9759–9764
52.
Zurück zum Zitat Reddy G, Straub E, Thirumalai D (2010) Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires. Proc Natl Acad Sci USA 107:21459–21464 Reddy G, Straub E, Thirumalai D (2010) Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires. Proc Natl Acad Sci USA 107:21459–21464
53.
Zurück zum Zitat Fernández A, Kardos J, Scott LR, Goto Y, Berry RS (2003) Structural defects and the diagnosis of amyloidogenic propensity. Proc Natl Acad Sci USA 100:6446–6451 Fernández A, Kardos J, Scott LR, Goto Y, Berry RS (2003) Structural defects and the diagnosis of amyloidogenic propensity. Proc Natl Acad Sci USA 100:6446–6451
54.
Zurück zum Zitat Fernández A, Lynch M (2011) Non-adaptive origins of interactome complexity. Nature 474:502–505 Fernández A, Lynch M (2011) Non-adaptive origins of interactome complexity. Nature 474:502–505
55.
Zurück zum Zitat De Simone A, Dhulesia A, Soldi G, Vendruscolo M, Hsu S-TD, Chiti F, Dobson CM (2011) Experimental free energy surfaces reveal the mechanisms of maintenance of protein stability. Proc Natl Acad Sci USA 108:21057–21062 De Simone A, Dhulesia A, Soldi G, Vendruscolo M, Hsu S-TD, Chiti F, Dobson CM (2011) Experimental free energy surfaces reveal the mechanisms of maintenance of protein stability. Proc Natl Acad Sci USA 108:21057–21062
56.
Zurück zum Zitat Yu H, Rick S (2010) Free energy, entropy, and enthalpy of a water molecule in various protein environments. J Phys Chem B 114:11552–11560 Yu H, Rick S (2010) Free energy, entropy, and enthalpy of a water molecule in various protein environments. J Phys Chem B 114:11552–11560
57.
Zurück zum Zitat Baron R, Setny P, McCammon JA (2010) Water in cavity-ligand recognition. J Am Chem Soc 132:12091–12097 Baron R, Setny P, McCammon JA (2010) Water in cavity-ligand recognition. J Am Chem Soc 132:12091–12097
58.
Zurück zum Zitat Snyder PW, Mecinovic J, Moustakas DT, Thomas SW III, Harder M, Mack ET, Lockett MR, Héroux A, Sherman W, Whitesides GM (2011) Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc Natl Acad Sci USA 108:17889–17894 Snyder PW, Mecinovic J, Moustakas DT, Thomas SW III, Harder M, Mack ET, Lockett MR, Héroux A, Sherman W, Whitesides GM (2011) Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc Natl Acad Sci USA 108:17889–17894
59.
Zurück zum Zitat Yin H, Hummer G, Rasaiah JC (2007) Metastable water clusters in the nonpolar cavities of the thermostable protein tetrabrachion. J Am Chem Soc 129:7369–7377 Yin H, Hummer G, Rasaiah JC (2007) Metastable water clusters in the nonpolar cavities of the thermostable protein tetrabrachion. J Am Chem Soc 129:7369–7377
60.
Zurück zum Zitat Ahmad M, Gu W, Geyer T, Helms V (2011) Adhesive water networks facilitate binding of protein interfaces. Nat Commun 2:261 Ahmad M, Gu W, Geyer T, Helms V (2011) Adhesive water networks facilitate binding of protein interfaces. Nat Commun 2:261
61.
Zurück zum Zitat Sahai MA, Biggin PC (2011) Quantifying water-mediated protein-ligand interactions in a glutamate receptor: a DFT study. J Phys Chem B 115:7085–7096 Sahai MA, Biggin PC (2011) Quantifying water-mediated protein-ligand interactions in a glutamate receptor: a DFT study. J Phys Chem B 115:7085–7096
62.
Zurück zum Zitat Tame JRH, Sleigh SH, Wilkinson AJ, Ladbury JE (1996) The role of water in sequence-independent ligand binding by an oligopeptide transporter protein. Nat Struct Biol 3:998–1001 Tame JRH, Sleigh SH, Wilkinson AJ, Ladbury JE (1996) The role of water in sequence-independent ligand binding by an oligopeptide transporter protein. Nat Struct Biol 3:998–1001
63.
Zurück zum Zitat Grossman M, Born B, Heyden M, Tworowski D, Fields GB, Sagi I, Havenith M (2011) Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site. Nat Struct Mol Biol 18:1102–1108 Grossman M, Born B, Heyden M, Tworowski D, Fields GB, Sagi I, Havenith M (2011) Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site. Nat Struct Mol Biol 18:1102–1108
64.
Zurück zum Zitat Gnanasekaran R, Xu Y, Leitner DM (2010) Dynamics of water clusters confined in proteins: a molecular dynamics simulation study of interfacial waters in a dimeric hemoglobin. J Phys Chem B 114:16989–16996 Gnanasekaran R, Xu Y, Leitner DM (2010) Dynamics of water clusters confined in proteins: a molecular dynamics simulation study of interfacial waters in a dimeric hemoglobin. J Phys Chem B 114:16989–16996
65.
Zurück zum Zitat Rodriquez JC, Zeng Y, Wilks A, Rivera M (2007) The hydrogen-bonding network in heme oxygenase also functions as a modulator of enzyme dynamics: chaotic motions upon disrupting the H-bond network in heme oxygenase from Psuedomonas aeruginosa. J Am Chem Soc 129:11730–11742 Rodriquez JC, Zeng Y, Wilks A, Rivera M (2007) The hydrogen-bonding network in heme oxygenase also functions as a modulator of enzyme dynamics: chaotic motions upon disrupting the H-bond network in heme oxygenase from Psuedomonas aeruginosa. J Am Chem Soc 129:11730–11742
66.
Zurück zum Zitat Krauss M, Gilson HSR, Gresh N (2001) Structure of the first-shell active site in metallolactamase: effect of water ligands. J Phys Chem B 105:8040–8049 Krauss M, Gilson HSR, Gresh N (2001) Structure of the first-shell active site in metallolactamase: effect of water ligands. J Phys Chem B 105:8040–8049
67.
Zurück zum Zitat Wang L, Yu X, Hu P, Broyde S, Zhang Y (2007) A water-mediated and substrate-assisted catalytic mechanism for Sulfolobus solfataricus DNA polymerase IV. J Am Chem Soc 129:4731–4737 Wang L, Yu X, Hu P, Broyde S, Zhang Y (2007) A water-mediated and substrate-assisted catalytic mechanism for Sulfolobus solfataricus DNA polymerase IV. J Am Chem Soc 129:4731–4737
68.
Zurück zum Zitat Sicking W, Korth H-G, de Groot H, Sustmann R (2008) On the functional role of a water molecule in clade 3 catalases: a proposal for the mechanism by which NADPH prevents the formation of compound II. J Am Chem Soc 130:7345–7356 Sicking W, Korth H-G, de Groot H, Sustmann R (2008) On the functional role of a water molecule in clade 3 catalases: a proposal for the mechanism by which NADPH prevents the formation of compound II. J Am Chem Soc 130:7345–7356
69.
Zurück zum Zitat Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244:456–462 Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244:456–462
70.
Zurück zum Zitat Garczarek F, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by FTIR Spectroscopy. Nature 439:109–112 Garczarek F, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by FTIR Spectroscopy. Nature 439:109–112
71.
Zurück zum Zitat Mathias G, Marx D (2007) Structures and spectral signatures of protonated water networks in bacteriorhodopsin. Proc Natl Acad Sci USA 104:6980–6985 Mathias G, Marx D (2007) Structures and spectral signatures of protonated water networks in bacteriorhodopsin. Proc Natl Acad Sci USA 104:6980–6985
72.
Zurück zum Zitat Chen H, Ilan B, Wu Y, Zhu F, Schulten K, Voth GA (2007) Charge delocalization in proton channels, I: the aquaporin channels and proton blockage. Biophys J 92:46–60 Chen H, Ilan B, Wu Y, Zhu F, Schulten K, Voth GA (2007) Charge delocalization in proton channels, I: the aquaporin channels and proton blockage. Biophys J 92:46–60
73.
Zurück zum Zitat Brändén M, Sandén T, Brzezinski P, Widengren J (2006) Localized proton microcircuits at the biological membrane-water interface. Proc Natl Acad Sci USA 103:19766–19770 Brändén M, Sandén T, Brzezinski P, Widengren J (2006) Localized proton microcircuits at the biological membrane-water interface. Proc Natl Acad Sci USA 103:19766–19770
74.
Zurück zum Zitat Springer A, Hagen V, Cherepanov DA, Antonenko YN, Pohl P (2011) Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc Natl Acad Sci USA 108:14461–14466 Springer A, Hagen V, Cherepanov DA, Antonenko YN, Pohl P (2011) Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc Natl Acad Sci USA 108:14461–14466
75.
Zurück zum Zitat Beckstein O, Biggin PC, Sansom MSPA (2001) A hydrophobic gating mechanism for nanopores. J Phys Chem B 105:12902–12905 Beckstein O, Biggin PC, Sansom MSPA (2001) A hydrophobic gating mechanism for nanopores. J Phys Chem B 105:12902–12905
76.
Zurück zum Zitat Rasaiah JC, Garde S, Hummer G (2008) Water in nonpolar confinement: from nanotubes to proteins and beyond. Annu Rev Phys Chem 59:713–740 Rasaiah JC, Garde S, Hummer G (2008) Water in nonpolar confinement: from nanotubes to proteins and beyond. Annu Rev Phys Chem 59:713–740
77.
Zurück zum Zitat Anishkin A, Sukharev S (2004) Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys J 86:2883–2895 Anishkin A, Sukharev S (2004) Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys J 86:2883–2895
78.
Zurück zum Zitat Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60 Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60
79.
Zurück zum Zitat Rupley JA, Careri G (1991) Protein hydration and function. Adv Protein Chem 41:37–172 Rupley JA, Careri G (1991) Protein hydration and function. Adv Protein Chem 41:37–172
80.
Zurück zum Zitat Purkiss A, Skoulakis S, Goodfellow JM (2001) The protein-solvent interface: a big splash. Phil Trans R Soc Lond A Math Phys Eng Sci 359:1515–1527 Purkiss A, Skoulakis S, Goodfellow JM (2001) The protein-solvent interface: a big splash. Phil Trans R Soc Lond A Math Phys Eng Sci 359:1515–1527
81.
Zurück zum Zitat Olano LR, Rick SW (2004) Hydration free energies and entropies for water in protein interiors. J Am Chem Soc 126:7991–8000 Olano LR, Rick SW (2004) Hydration free energies and entropies for water in protein interiors. J Am Chem Soc 126:7991–8000
82.
Zurück zum Zitat Okimoto N, Nakamura T, Suenaga A, Futatsugi N, Hirano Y, Yamaguchi I, Ebisuzaki T (2004) Cooperative motions of protein and hydration water molecules: molecular dynamics study of scytalone dehydratase. J Am Chem Soc 126:13132–13139 Okimoto N, Nakamura T, Suenaga A, Futatsugi N, Hirano Y, Yamaguchi I, Ebisuzaki T (2004) Cooperative motions of protein and hydration water molecules: molecular dynamics study of scytalone dehydratase. J Am Chem Soc 126:13132–13139
83.
Zurück zum Zitat Bizzarri AR, Cannistraro S (2002) Molecular dynamics of water at the protein-solvent interface. J Phys Chem B 106:6617–6633 Bizzarri AR, Cannistraro S (2002) Molecular dynamics of water at the protein-solvent interface. J Phys Chem B 106:6617–6633
84.
Zurück zum Zitat Russo D, Murarka RK, Copley JRD, Head-Gordon T (2005) Molecular view of water dynamics near model peptides. J Phys Chem B 109:12966–12975 Russo D, Murarka RK, Copley JRD, Head-Gordon T (2005) Molecular view of water dynamics near model peptides. J Phys Chem B 109:12966–12975
85.
Zurück zum Zitat Rasmussen BF, Stock AM, Ringe D, Petsko GA (1992) Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature 357:423–424 Rasmussen BF, Stock AM, Ringe D, Petsko GA (1992) Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature 357:423–424
86.
Zurück zum Zitat Reat V, Dunn R, Ferrand M, Finney JL, Daniel RM, Smith JC (2000) Solvent dependence of dynamic transitions in protein solutions. Proc Natl Acad Sci USA 97:9961–9966 Reat V, Dunn R, Ferrand M, Finney JL, Daniel RM, Smith JC (2000) Solvent dependence of dynamic transitions in protein solutions. Proc Natl Acad Sci USA 97:9961–9966
87.
Zurück zum Zitat Tarek M, Tobias DJ (2002) Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys Rev Lett 88:138101 Tarek M, Tobias DJ (2002) Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys Rev Lett 88:138101
88.
Zurück zum Zitat Chen S-H, Liu L, Fratini E, Baglioni P, Faraone A, Mamontov E (2006) Observation of fragile-to-strong dynamic crossover in protein hydration water. Proc Natl Acad Sci USA 103:9012–9016 Chen S-H, Liu L, Fratini E, Baglioni P, Faraone A, Mamontov E (2006) Observation of fragile-to-strong dynamic crossover in protein hydration water. Proc Natl Acad Sci USA 103:9012–9016
89.
Zurück zum Zitat Tournier AL, Xu J, Smith JC (2003) Translational hydration water dynamics drives the protein glass transition. Biophys J 85:1871–1875 Tournier AL, Xu J, Smith JC (2003) Translational hydration water dynamics drives the protein glass transition. Biophys J 85:1871–1875
90.
Zurück zum Zitat Smolin N, Oleinikova A, Brovchenko I, Geiger A, Winter R (2005) Properties of spanning water networks at protein surfaces. J Phys Chem B 109:10995–11005 Smolin N, Oleinikova A, Brovchenko I, Geiger A, Winter R (2005) Properties of spanning water networks at protein surfaces. J Phys Chem B 109:10995–11005
91.
Zurück zum Zitat Gallat F-X, Laganowsky A, Wood K, Gabel F, van Eijk L, Wuttke J, Moulin M, Härtlein M, Eisenberg D, Colletier J-P, Zaccai G, Weik M. (2012) Dynamical coupling of intrinsically disordered proteins and their hydration water: comparison with folded soluble and membrane proteins. Biophys J 103:129–136 Gallat F-X, Laganowsky A, Wood K, Gabel F, van Eijk L, Wuttke J, Moulin M, Härtlein M, Eisenberg D, Colletier J-P, Zaccai G, Weik M. (2012) Dynamical coupling of intrinsically disordered proteins and their hydration water: comparison with folded soluble and membrane proteins. Biophys J 103:129–136
92.
Zurück zum Zitat Magazù S, Migliardo F, Benedetto A (2011) Puzzle of protein dynamical transition. J Phys Chem B 115:7736–7743 Magazù S, Migliardo F, Benedetto A (2011) Puzzle of protein dynamical transition. J Phys Chem B 115:7736–7743
93.
Zurück zum Zitat Lopez M, Kurkal-Siebert V, Dunn RV, Tehei M, Finey JL, Smith JC, Daniel RM (2010) Activity and dynamics of an enzyme, pig liver esterase, in near-anhydrous conditions. Biophys J 99:L62–L64 Lopez M, Kurkal-Siebert V, Dunn RV, Tehei M, Finey JL, Smith JC, Daniel RM (2010) Activity and dynamics of an enzyme, pig liver esterase, in near-anhydrous conditions. Biophys J 99:L62–L64
94.
Zurück zum Zitat Turner DH (2000) Conformational changes. In: Bloomfield VA, Crothers DM, Tinoco I (eds) Nucleic acids. Structure, properties and functions. University Science, Sausalito, pp 259–334 Turner DH (2000) Conformational changes. In: Bloomfield VA, Crothers DM, Tinoco I (eds) Nucleic acids. Structure, properties and functions. University Science, Sausalito, pp 259–334
95.
Zurück zum Zitat Rueda M, Kalko SG, Luque FJ, Orozco M (2003) The structure and dynamics of DNA in the gas phase. J Am Chem Soc 125:8007–8014 Rueda M, Kalko SG, Luque FJ, Orozco M (2003) The structure and dynamics of DNA in the gas phase. J Am Chem Soc 125:8007–8014
96.
Zurück zum Zitat Cui S, Albrecht C, Kühner F, Gaub HE (2006) Weakly bound water molecules shorten single-stranded DNA. J Am Chem Soc 128:6636–6639 Cui S, Albrecht C, Kühner F, Gaub HE (2006) Weakly bound water molecules shorten single-stranded DNA. J Am Chem Soc 128:6636–6639
97.
Zurück zum Zitat Kopka ML, Fratini AV, Drew HR, Dickerson RE (1983) Ordered water structure around a B-DNA dodecamer: a quantitative study. J Mol Biol 163:129–146 Kopka ML, Fratini AV, Drew HR, Dickerson RE (1983) Ordered water structure around a B-DNA dodecamer: a quantitative study. J Mol Biol 163:129–146
98.
Zurück zum Zitat Szyc L, Yang M, Elsaesser T (2010) Ultrafast energy exchange via water-phosphate interactions in hydrated DNA. J Phys Chem B 114:7951–7957 Szyc L, Yang M, Elsaesser T (2010) Ultrafast energy exchange via water-phosphate interactions in hydrated DNA. J Phys Chem B 114:7951–7957
99.
Zurück zum Zitat Ha JH, Capp MW, Hohenwalter MD, Baskerville M, Record MT Jr (1992) Thermodynamic stoichiometries of participation of water, cations and anions in specific and non-specific binding of lac repressor to DNA: possible thermodynamic origins of the ‘glutamate effect’ on protein-DNA interactions. J Mol Biol 228:252–264 Ha JH, Capp MW, Hohenwalter MD, Baskerville M, Record MT Jr (1992) Thermodynamic stoichiometries of participation of water, cations and anions in specific and non-specific binding of lac repressor to DNA: possible thermodynamic origins of the ‘glutamate effect’ on protein-DNA interactions. J Mol Biol 228:252–264
100.
Zurück zum Zitat Robinson CR, Sligar SG (1993) Molecular recognition mediated by bound water: a mechanism for star activity of the restriction enzyme endonuclease EcoRI. J Mol Biol 234:302–306 Robinson CR, Sligar SG (1993) Molecular recognition mediated by bound water: a mechanism for star activity of the restriction enzyme endonuclease EcoRI. J Mol Biol 234:302–306
101.
Zurück zum Zitat Fuxreiter M, Mezei M, Simon I, Osman R (2005) Interfacial water as a ‘hydration fingerprint’ in the noncognate complex of BamHI. Biophys J 89:903–911 Fuxreiter M, Mezei M, Simon I, Osman R (2005) Interfacial water as a ‘hydration fingerprint’ in the noncognate complex of BamHI. Biophys J 89:903–911
102.
Zurück zum Zitat Brovchenko I, Krukau A, Oleinikova A, Mazur AK (2006) Water percolation governs polymorphic transitions and conductivity of DNA. Phys Rev Lett 97:137801 Brovchenko I, Krukau A, Oleinikova A, Mazur AK (2006) Water percolation governs polymorphic transitions and conductivity of DNA. Phys Rev Lett 97:137801
103.
Zurück zum Zitat Brovchenko I, Krukau A, Oleinikova A, Mazur AK (2007) Water clustering and percolation in low hydration DNA shells. J Phys Chem B 111:3258–3266 Brovchenko I, Krukau A, Oleinikova A, Mazur AK (2007) Water clustering and percolation in low hydration DNA shells. J Phys Chem B 111:3258–3266
104.
Zurück zum Zitat Reiter GF, Senesi R, Mayers J (2010) Changes in the zero-point energy of protons as the source of the binding energy of water to A-phase DNA. Phys Rev Lett 105:148101 Reiter GF, Senesi R, Mayers J (2010) Changes in the zero-point energy of protons as the source of the binding energy of water to A-phase DNA. Phys Rev Lett 105:148101
105.
Zurück zum Zitat Shui X, Sines CC, McFail-Isom L, VanDerveer D, Williams LD (1998) Structure of the potassium form of CGCGAATTCGCG: DNA deformation by electrostatic collapse around inorganic cations. Biochemistry 37:16877–16887 Shui X, Sines CC, McFail-Isom L, VanDerveer D, Williams LD (1998) Structure of the potassium form of CGCGAATTCGCG: DNA deformation by electrostatic collapse around inorganic cations. Biochemistry 37:16877–16887
106.
Zurück zum Zitat Sorin EJ, Rhee YM, Pande VS (2005) Does water play a structural role in the folding of small nucleic acids? Biophys J 88:2516–2524 Sorin EJ, Rhee YM, Pande VS (2005) Does water play a structural role in the folding of small nucleic acids? Biophys J 88:2516–2524
107.
Zurück zum Zitat Tjivikua T, Ballester P, Rebek J Jr (1990) Self-replicating system. J Am Chem Soc 112:1249–1250 Tjivikua T, Ballester P, Rebek J Jr (1990) Self-replicating system. J Am Chem Soc 112:1249–1250
108.
Zurück zum Zitat Kunz W, Henle J, Ninham BW (2004) ‘Zur Lehre von der Wikrung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr Opin Colloid Interface Sci 9:19–37 Kunz W, Henle J, Ninham BW (2004) ‘Zur Lehre von der Wikrung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr Opin Colloid Interface Sci 9:19–37
109.
Zurück zum Zitat Tobias D, Hemminger J (2008) Getting specific about specific ion effects. Science 319:1197–1198 Tobias D, Hemminger J (2008) Getting specific about specific ion effects. Science 319:1197–1198
110.
Zurück zum Zitat Jungwirth P, Tobias DJ (2006) Specific ion effects at the air/water interface. Chem Rev 106:1259–1281 Jungwirth P, Tobias DJ (2006) Specific ion effects at the air/water interface. Chem Rev 106:1259–1281
111.
Zurück zum Zitat Petersen PB, Saykally RJ (2006) On the nature of ions at the liquid water surface. Annu Rev Phys Chem 57:333–364 Petersen PB, Saykally RJ (2006) On the nature of ions at the liquid water surface. Annu Rev Phys Chem 57:333–364
112.
Zurück zum Zitat Zangi R, Berne BJ (2006) Aggregation and dispersion of small hydrophobic particles in aqueous electrolyte solutions. J Phys Chem B 110:22736–22741 Zangi R, Berne BJ (2006) Aggregation and dispersion of small hydrophobic particles in aqueous electrolyte solutions. J Phys Chem B 110:22736–22741
113.
Zurück zum Zitat Zangi R, Hagen M, Berne BJ (2007) Effects of ions on the hydrophobic interaction between two plates. J Am Chem Soc 129:4678–4686 Zangi R, Hagen M, Berne BJ (2007) Effects of ions on the hydrophobic interaction between two plates. J Am Chem Soc 129:4678–4686
114.
Zurück zum Zitat Petersen MK, Iyengar SS, Day TJF, Voth GA (2004) The hydrated proton at the water liquid/vapor interface. J Phys Chem B 108:14804–14806 Petersen MK, Iyengar SS, Day TJF, Voth GA (2004) The hydrated proton at the water liquid/vapor interface. J Phys Chem B 108:14804–14806
115.
Zurück zum Zitat Buch V, Milet A, Vácha R, Jungwirth P, Devlin JP (2007) Proc Natl Acad Sci USA 104:7342 Buch V, Milet A, Vácha R, Jungwirth P, Devlin JP (2007) Proc Natl Acad Sci USA 104:7342
116.
Zurück zum Zitat Beattie JK, Djerdjev AM, Warr GG (2009) The surface of neat water is basic. Faraday Discuss 141:31–39 Beattie JK, Djerdjev AM, Warr GG (2009) The surface of neat water is basic. Faraday Discuss 141:31–39
117.
Zurück zum Zitat Creux P, Lachaise J, Graciaa A, Beattie JK, Djerdjev AM (2009) Strong specific hydroxide ion binding at the pristine oil/water and air/water interfaces. J Phys Chem B 113:14146–14150 Creux P, Lachaise J, Graciaa A, Beattie JK, Djerdjev AM (2009) Strong specific hydroxide ion binding at the pristine oil/water and air/water interfaces. J Phys Chem B 113:14146–14150
118.
Zurück zum Zitat Daniel RM, Finney JL, Stoneham M (2004) The molecular basis of life: is life possible without water? Phil Trans R Soc Lond B 359:1143–1328 Daniel RM, Finney JL, Stoneham M (2004) The molecular basis of life: is life possible without water? Phil Trans R Soc Lond B 359:1143–1328
Metadaten
Titel
The Importance of Water
verfasst von
Philip Ball
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-31730-9_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.