Skip to main content
Erschienen in: Natural Computing 2/2018

14.03.2017

The influence of computational traits on the natural selection of the nervous system

verfasst von: Sergio Miguel-Tomé

Erschienen in: Natural Computing | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article addresses why the neural network model has been selected by nature against other computational models to generate behavior in complex multicellular clades. This question, which has not yet been addressed in research, should not be ignored because understanding this issue is necessary to have a complete picture of the evolutionary process of the nervous system. The starting point to discuss the issue is a proposal made 30 years ago: the free-moving hypothesis. This proposal establishes prediction as the main function of the brain and that all multicellular organisms that move require a brain in order to make predictions. This article contains a review contrasting this hypothesis with the discoveries made in the last 30 years within different biological kingdoms. Although none of these discoveries contradict the free-moving hypothesis, it still does not answer the main question. Alternative hypotheses about the origin of the nervous system are discussed in this paper, but they also are not able to answer the question. Six hypotheses are proposed as possible answers, and each of them is discussed by comparing neural processing systems with three other alternative processing systems. The result is that the neural processing system is selected against other kinds of processing systems because it has computational robustness to damage, allowing its function of prediction to be more durable. While this result, called the first neural processing principle, answers the initial question and permits a finished proof of the free-moving hypothesis, it gives rise to the question of how computationally robust a system must be to be selected by nature. This paper claims that the system selected must be computationally robust enough to have enough offspring to allow variation. This answer, named the second neural principle, determines the minimum amount of neurons that a neural processing system must have, but not the maximum. To address this issue, the third and fourth neural processing principles are stated, which determine that the maximum number of neurons is limited by energetic restrictions and body size, respectively. The results presented in this paper show that computational robustness is an important parameter to understand the evolution of nervous system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Astrocytes also play an important role in the functions of neurons.
 
2
Neural network models that overcome the Church-Turing limit are not considered because there is no experimental evidence that this happens in nature (Siegelmann 1998).
 
Literatur
Zurück zum Zitat Acar M, Mettetal J, van Oudenaarden A (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat Genet 40(4):471–475CrossRef Acar M, Mettetal J, van Oudenaarden A (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat Genet 40(4):471–475CrossRef
Zurück zum Zitat Agerwala T (1974) Communication with automata. Hopkins computer research report. John Hopkins University, Baltimore Agerwala T (1974) Communication with automata. Hopkins computer research report. John Hopkins University, Baltimore
Zurück zum Zitat Alstott J et al (2009) Modeling the impact of lesions in the human brain. PLoS Comput Biol 5(6):e1000,408CrossRef Alstott J et al (2009) Modeling the impact of lesions in the human brain. PLoS Comput Biol 5(6):e1000,408CrossRef
Zurück zum Zitat Ames-III A (2000) CNS energy metabolism as related to function. Brain Res Rev 34(12):42–68CrossRef Ames-III A (2000) CNS energy metabolism as related to function. Brain Res Rev 34(12):42–68CrossRef
Zurück zum Zitat Armitage J, Holland I, Jenal U, Kenny B (2005) Neural networks in bacteria: making connections. J Bacteriol 187(1):26–36CrossRef Armitage J, Holland I, Jenal U, Kenny B (2005) Neural networks in bacteria: making connections. J Bacteriol 187(1):26–36CrossRef
Zurück zum Zitat Avlund M, Dodd IB, Semsey S, Sneppen K, Krishna S (2009) Why do phage play dice? J Virol 83(22):11416–11420CrossRef Avlund M, Dodd IB, Semsey S, Sneppen K, Krishna S (2009) Why do phage play dice? J Virol 83(22):11416–11420CrossRef
Zurück zum Zitat Balaban N et al (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625CrossRef Balaban N et al (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625CrossRef
Zurück zum Zitat Baluka F et al (2009) The root-brain hypothesis of charles and francis darwin. Plant Signal Behav 4(12):1121–1127CrossRef Baluka F et al (2009) The root-brain hypothesis of charles and francis darwin. Plant Signal Behav 4(12):1121–1127CrossRef
Zurück zum Zitat Baluska F, Mancuso S (2013) Root apex transition zone as oscillatory zone. Front Plant Sci 4:354CrossRef Baluska F, Mancuso S (2013) Root apex transition zone as oscillatory zone. Front Plant Sci 4:354CrossRef
Zurück zum Zitat Baluska F et al (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10(3):106–111CrossRef Baluska F et al (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10(3):106–111CrossRef
Zurück zum Zitat Baluska F et al (2008) Vesicular secretion of auxin. Plant Signal Behav 3(4):254–256CrossRef Baluska F et al (2008) Vesicular secretion of auxin. Plant Signal Behav 3(4):254–256CrossRef
Zurück zum Zitat Bear MF, Connors BW, Paradiso MA (2007) Neuroscience: exploring the brain. Lippincott Williams & Wilkins, Philadelphia Bear MF, Connors BW, Paradiso MA (2007) Neuroscience: exploring the brain. Lippincott Williams & Wilkins, Philadelphia
Zurück zum Zitat Bejan A (2006) Advanced engineering thermodynamics, 3rd edn. Wiley, Hoboken Bejan A (2006) Advanced engineering thermodynamics, 3rd edn. Wiley, Hoboken
Zurück zum Zitat Bejan A, Lorente S (2011) The constructal law and the evolution of design in nature. Phys Life Rev 8(3):209–240CrossRef Bejan A, Lorente S (2011) The constructal law and the evolution of design in nature. Phys Life Rev 8(3):209–240CrossRef
Zurück zum Zitat Bellingham MC, Lim R, Walmsley B (1998) Developmental changes in epsc quantal size and quantal content at a central glutamatergic synapse in rat. J Physiol 511(3):861–869CrossRef Bellingham MC, Lim R, Walmsley B (1998) Developmental changes in epsc quantal size and quantal content at a central glutamatergic synapse in rat. J Physiol 511(3):861–869CrossRef
Zurück zum Zitat Bertens L et al (2015) Modeling biological gradient formation: combining partial differential equations and petri nets. Nat Comput 15(4):665–675MathSciNetCrossRef Bertens L et al (2015) Modeling biological gradient formation: combining partial differential equations and petri nets. Nat Comput 15(4):665–675MathSciNetCrossRef
Zurück zum Zitat Bindschaedler C et al (2011) Growing up with bilateral hippocampal atrophy: from childhood to teenage. Cortex 47(8):931–944CrossRef Bindschaedler C et al (2011) Growing up with bilateral hippocampal atrophy: from childhood to teenage. Cortex 47(8):931–944CrossRef
Zurück zum Zitat Boisseau RP, Vogel D, Dussutour A (2016) Habituation in non-neural organisms: evidence from slime moulds. In: Proceedings of the royal society of London B: biological sciences, 283(1829) Boisseau RP, Vogel D, Dussutour A (2016) Habituation in non-neural organisms: evidence from slime moulds. In: Proceedings of the royal society of London B: biological sciences, 283(1829)
Zurück zum Zitat Bouché N, Fromm H (2004) Gaba in plants: just a metabolite? Trends Plant Sci 9(3):110–115CrossRef Bouché N, Fromm H (2004) Gaba in plants: just a metabolite? Trends Plant Sci 9(3):110–115CrossRef
Zurück zum Zitat Bradford MJ, Roff DA (1993) Bet hedging and the diapause strategies of the cricket Allonemobius fasciatus. Ecology 74(4):1129–1135CrossRef Bradford MJ, Roff DA (1993) Bet hedging and the diapause strategies of the cricket Allonemobius fasciatus. Ecology 74(4):1129–1135CrossRef
Zurück zum Zitat Branco T, Staras K (2009) The probability of neurotransmitter release: variability and feedback control at single synapses. Nat Rev Neurosci 10:373–383CrossRef Branco T, Staras K (2009) The probability of neurotransmitter release: variability and feedback control at single synapses. Nat Rev Neurosci 10:373–383CrossRef
Zurück zum Zitat Bray D (2003) Molecular networks: the top-down view. Science 301(5641):1864–1865CrossRef Bray D (2003) Molecular networks: the top-down view. Science 301(5641):1864–1865CrossRef
Zurück zum Zitat Brenner E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11(8):413419CrossRef Brenner E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11(8):413419CrossRef
Zurück zum Zitat Brodal P (2010) The central nervous system. Oxford University Press, Oxford Brodal P (2010) The central nervous system. Oxford University Press, Oxford
Zurück zum Zitat Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 12:336–349CrossRef Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 12:336–349CrossRef
Zurück zum Zitat Butterfield NJ (2015) The neoproterozoic. Curr Biol 25(19):R859–R863CrossRef Butterfield NJ (2015) The neoproterozoic. Curr Biol 25(19):R859–R863CrossRef
Zurück zum Zitat Cardelli L, Zavattaro G (2008) On the computational power of biochemistry. In: Horimoto K, Regensburger G, Rosenkranz M, Yoshida H (eds) Algebraic biology, vol 5147. Springer, Berlin, pp 65–80CrossRef Cardelli L, Zavattaro G (2008) On the computational power of biochemistry. In: Horimoto K, Regensburger G, Rosenkranz M, Yoshida H (eds) Algebraic biology, vol 5147. Springer, Berlin, pp 65–80CrossRef
Zurück zum Zitat Cartwright P et al (2007) Exceptionally preserved jellyfishes from the middle cambrian. PLoS ONE 2(10):e1121CrossRef Cartwright P et al (2007) Exceptionally preserved jellyfishes from the middle cambrian. PLoS ONE 2(10):e1121CrossRef
Zurück zum Zitat Chase R (2000) Structure and function in the cerebral ganglion. Microsc Res Tech 49(6):511–520CrossRef Chase R (2000) Structure and function in the cerebral ganglion. Microsc Res Tech 49(6):511–520CrossRef
Zurück zum Zitat Cherniak C (1994) Component placement optimization in the brain. J Neurosci 14(4):2418–2427CrossRef Cherniak C (1994) Component placement optimization in the brain. J Neurosci 14(4):2418–2427CrossRef
Zurück zum Zitat de Mairan J (1729) Observation botanique. Histoire de l’Academie royale des sciences, pp 35–36 de Mairan J (1729) Observation botanique. Histoire de l’Academie royale des sciences, pp 35–36
Zurück zum Zitat Delcomyn F (1999) Foundations of neurobiology. WH Freeman, New York Delcomyn F (1999) Foundations of neurobiology. WH Freeman, New York
Zurück zum Zitat Fernando C et al (2009) Molecular circuits for associative learning in single-celled organisms. J R Soc Interface 6(34):463–469CrossRef Fernando C et al (2009) Molecular circuits for associative learning in single-celled organisms. J R Soc Interface 6(34):463–469CrossRef
Zurück zum Zitat Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30(3):249–257CrossRef Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30(3):249–257CrossRef
Zurück zum Zitat Fukuda M, Yamamoto T, Llins R (2001) The isochronic band hypothesis and climbing fibre regulation of motricity: an experimental study. Eur J Neurosci 13(2):315–326CrossRef Fukuda M, Yamamoto T, Llins R (2001) The isochronic band hypothesis and climbing fibre regulation of motricity: an experimental study. Eur J Neurosci 13(2):315–326CrossRef
Zurück zum Zitat Garm A, Ekstrm P, Boudes M, Nilsson DE (2006) Rhopalia are integrated parts of the central nervous system in box jellyfish. Cell Tissue Res 325(2):333–343CrossRef Garm A, Ekstrm P, Boudes M, Nilsson DE (2006) Rhopalia are integrated parts of the central nervous system in box jellyfish. Cell Tissue Res 325(2):333–343CrossRef
Zurück zum Zitat Ghosh A, Pal N, Pal S (1995) Modeling of component failure in neural networks for robustness evaluation: an application to object extraction. IEEE Trans Neural Netw 6(3):648–656CrossRef Ghosh A, Pal N, Pal S (1995) Modeling of component failure in neural networks for robustness evaluation: an application to object extraction. IEEE Trans Neural Netw 6(3):648–656CrossRef
Zurück zum Zitat Glover J, Fritzsch B (2009) Encyclopedia of neuroscience, chap. Brains of primitive chordates. Springer, Berlin Glover J, Fritzsch B (2009) Encyclopedia of neuroscience, chap. Brains of primitive chordates. Springer, Berlin
Zurück zum Zitat Green RM et al (2002) Circadian rhythms confer a higher level of fitness to arabidopsis plants. Plant Physiol 129(2):576–584MathSciNetCrossRef Green RM et al (2002) Circadian rhythms confer a higher level of fitness to arabidopsis plants. Plant Physiol 129(2):576–584MathSciNetCrossRef
Zurück zum Zitat Grunfest H (1959) Evolution of nervous control from primitive organisms to man. chap. Evolution of conduction in the nervous system, pp 43–86 Grunfest H (1959) Evolution of nervous control from primitive organisms to man. chap. Evolution of conduction in the nervous system, pp 43–86
Zurück zum Zitat Hanken J, Wake DB (1993) Miniaturization of body size: organismal consequences and evolutionary significance. Annu Rev Ecol Syst 24:501–519CrossRef Hanken J, Wake DB (1993) Miniaturization of body size: organismal consequences and evolutionary significance. Annu Rev Ecol Syst 24:501–519CrossRef
Zurück zum Zitat Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60(1):357–377CrossRef Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60(1):357–377CrossRef
Zurück zum Zitat Hedrich R, Salvador-Recatalá V, Dreyer I (2016) Electrical wiring and long-distance plant communication. Trends Plant Sci 21(5):376–387CrossRef Hedrich R, Salvador-Recatalá V, Dreyer I (2016) Electrical wiring and long-distance plant communication. Trends Plant Sci 21(5):376–387CrossRef
Zurück zum Zitat Hennessey TM, Rucker WB, McDiarmid CG (1979) Classical conditioning in paramecia. Anim Learn Behav 7(4):417–423CrossRef Hennessey TM, Rucker WB, McDiarmid CG (1979) Classical conditioning in paramecia. Anim Learn Behav 7(4):417–423CrossRef
Zurück zum Zitat Hjelmfelt A, Weinberger ED, Ross J (1991) Chemical implementation of neural networks and turing machines. Proc Natl Acad Sci 88(24):10983–10987MATHCrossRef Hjelmfelt A, Weinberger ED, Ross J (1991) Chemical implementation of neural networks and turing machines. Proc Natl Acad Sci 88(24):10983–10987MATHCrossRef
Zurück zum Zitat Hofman MA (1983) Energy metabolism, brain size and longevity in mammals. Q Rev Biol 58(4):495–512CrossRef Hofman MA (1983) Energy metabolism, brain size and longevity in mammals. Q Rev Biol 58(4):495–512CrossRef
Zurück zum Zitat Holland ND (2003) Early central nervous system evolution: an era of skin brains? Nat Rev Neurosci 4(8):617–627CrossRef Holland ND (2003) Early central nervous system evolution: an era of skin brains? Nat Rev Neurosci 4(8):617–627CrossRef
Zurück zum Zitat Huxley J (2010) Evolution: the modern synthesis. The definitve edition. MIT Press, Cambridge Huxley J (2010) Evolution: the modern synthesis. The definitve edition. MIT Press, Cambridge
Zurück zum Zitat Kalampokis A et al (2003) Robustness in biological neural networks. Phys A 317(34):581–590MATHCrossRef Kalampokis A et al (2003) Robustness in biological neural networks. Phys A 317(34):581–590MATHCrossRef
Zurück zum Zitat Katzenberger RJ et al (2013) A drosophila model of closed head traumatic brain injury. Proc Natl Acad Sci 110(44):E4152–E4159CrossRef Katzenberger RJ et al (2013) A drosophila model of closed head traumatic brain injury. Proc Natl Acad Sci 110(44):E4152–E4159CrossRef
Zurück zum Zitat Kazantsev VB et al (2004) Self-referential phase reset based on inferior olive oscillator dynamics. Proc Natl Acad Sci 101(52):18183–18188CrossRef Kazantsev VB et al (2004) Self-referential phase reset based on inferior olive oscillator dynamics. Proc Natl Acad Sci 101(52):18183–18188CrossRef
Zurück zum Zitat Keijzer F, van Duijn M, Lyon P (2013) What nervous systems do: early evolution, inputoutput, and the skin brain thesis. Adapt Behav 21(2):67–85CrossRef Keijzer F, van Duijn M, Lyon P (2013) What nervous systems do: early evolution, inputoutput, and the skin brain thesis. Adapt Behav 21(2):67–85CrossRef
Zurück zum Zitat Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (gaba) and plant responses to stress. Crit Rev Plant Sci 19(6):479–509CrossRef Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (gaba) and plant responses to stress. Crit Rev Plant Sci 19(6):479–509CrossRef
Zurück zum Zitat Knoll A (2011) The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci 39:217–239CrossRef Knoll A (2011) The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci 39:217–239CrossRef
Zurück zum Zitat Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338–341CrossRef Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338–341CrossRef
Zurück zum Zitat Laughlin SB, Sejnowski TJ (2003) Communication in neural networks. Science 301(5641):18701874CrossRef Laughlin SB, Sejnowski TJ (2003) Communication in neural networks. Science 301(5641):18701874CrossRef
Zurück zum Zitat Lenton TM et al (2014) Co-evolution of eukaryotes and ocean oxygenation in the neoproterozoic era. Nat Geosci 7:257–265CrossRef Lenton TM et al (2014) Co-evolution of eukaryotes and ocean oxygenation in the neoproterozoic era. Nat Geosci 7:257–265CrossRef
Zurück zum Zitat Levy WB, Baxter RA (2002) Energy-efficient neuronal computation via quantal synaptic failures. J Neurosci 22(11):4746–4755CrossRef Levy WB, Baxter RA (2002) Energy-efficient neuronal computation via quantal synaptic failures. J Neurosci 22(11):4746–4755CrossRef
Zurück zum Zitat Leys S, Mackie G (1997) Electrical recording from a glass sponge. Nature 387:29–30CrossRef Leys S, Mackie G (1997) Electrical recording from a glass sponge. Nature 387:29–30CrossRef
Zurück zum Zitat Leys SP (2015) Elements of a ‘nervous system’ in sponges. J Exp Biol 218(4):581–591CrossRef Leys SP (2015) Elements of a ‘nervous system’ in sponges. J Exp Biol 218(4):581–591CrossRef
Zurück zum Zitat Llinás R (1987) Mindwaves. chap. “Mindness” as a functional state of the brain. Oxford, pp 339–358 Llinás R (1987) Mindwaves. chap. “Mindness” as a functional state of the brain. Oxford, pp 339–358
Zurück zum Zitat Llinás R (2001) I of the vortex: from neurons to self. MIT press, Cambridge Llinás R (2001) I of the vortex: from neurons to self. MIT press, Cambridge
Zurück zum Zitat Lm A (1994) Molecular computation of solutions to combinatorial problems. Science 266(5187):1021–1024CrossRef Lm A (1994) Molecular computation of solutions to combinatorial problems. Science 266(5187):1021–1024CrossRef
Zurück zum Zitat Lyon P (2013) Developing scaffolds in evoution, culture and cognition. chap. Stress in mind: a stress response hypothesis cognitive cognition. MIT Press, pp 171–190 Lyon P (2013) Developing scaffolds in evoution, culture and cognition. chap. Stress in mind: a stress response hypothesis cognitive cognition. MIT Press, pp 171–190
Zurück zum Zitat Mackie G (2004) Central neural circuitry in the jellyfish Aglantha. Neurosignals 13(1–2):5–19CrossRef Mackie G (2004) Central neural circuitry in the jellyfish Aglantha. Neurosignals 13(1–2):5–19CrossRef
Zurück zum Zitat Mackie GO (1970) Neuroid conduction and the evolution of conducting tissues. The quarterly review of biology 45(4):319–332CrossRef Mackie GO (1970) Neuroid conduction and the evolution of conducting tissues. The quarterly review of biology 45(4):319–332CrossRef
Zurück zum Zitat Magnasco MO (1997) Chemical kinetics is turing universal. Phys Rev Lett 78(6):1190–1193CrossRef Magnasco MO (1997) Chemical kinetics is turing universal. Phys Rev Lett 78(6):1190–1193CrossRef
Zurück zum Zitat Makarenko V, Llins R (1998) Experimentally determined chaotic phase synchronization in a neuronal system. Proc Natl Acad Sci 95(26):15747–15752CrossRef Makarenko V, Llins R (1998) Experimentally determined chaotic phase synchronization in a neuronal system. Proc Natl Acad Sci 95(26):15747–15752CrossRef
Zurück zum Zitat Masi E et al (2009) Spatiotemporal dynamics of the electrical network activity in the root apex. Proc Natl Acad Sci 106(10):4048–4053CrossRef Masi E et al (2009) Spatiotemporal dynamics of the electrical network activity in the root apex. Proc Natl Acad Sci 106(10):4048–4053CrossRef
Zurück zum Zitat Mayr E (1997) The objects of selection. Proc Natl Acad Sci 94(6):2091–2094CrossRef Mayr E (1997) The objects of selection. Proc Natl Acad Sci 94(6):2091–2094CrossRef
Zurück zum Zitat McClung CR (2006) Plant circadian rhythms. Plant Cell 18(4):792–803CrossRef McClung CR (2006) Plant circadian rhythms. Plant Cell 18(4):792–803CrossRef
Zurück zum Zitat Miguel-Tomé S (2015) Trajectories-state: A new neural mechanism to interpretate cerebral dynamics. In: Artificial computation in biology and medicine, Lecture notes in computer science, vol 9107. Springer International Publishing, pp 88–97 Miguel-Tomé S (2015) Trajectories-state: A new neural mechanism to interpretate cerebral dynamics. In: Artificial computation in biology and medicine, Lecture notes in computer science, vol 9107. Springer International Publishing, pp 88–97
Zurück zum Zitat Mitchell A et al (2009) Adaptive prediction of environmental changes by microorganisms. Nature 460:220–224CrossRef Mitchell A et al (2009) Adaptive prediction of environmental changes by microorganisms. Nature 460:220–224CrossRef
Zurück zum Zitat Mitchell-Olds T, Willis JH, Goldstein DB (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 8:845–856CrossRef Mitchell-Olds T, Willis JH, Goldstein DB (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 8:845–856CrossRef
Zurück zum Zitat Monk T (2014) The evolutionary origin of nervous systems and implications for neural computation. Ph.D. thesis, University of Otago Monk T (2014) The evolutionary origin of nervous systems and implications for neural computation. Ph.D. thesis, University of Otago
Zurück zum Zitat Monk T, Paulin MG (2014) Predation and the origin of neurones. Brain Behav Evol 84:246–261CrossRef Monk T, Paulin MG (2014) Predation and the origin of neurones. Brain Behav Evol 84:246–261CrossRef
Zurück zum Zitat Moreno H et al (2009) Synaptic transmission block by presynaptic injection of oligomeric amyloid beta. Proc Natl Acad Sci 106(14):5901–5906CrossRef Moreno H et al (2009) Synaptic transmission block by presynaptic injection of oligomeric amyloid beta. Proc Natl Acad Sci 106(14):5901–5906CrossRef
Zurück zum Zitat Moroz L (2009) On the independent origins of complex brains and neurons. Brain Behav Evol 74:177–190CrossRef Moroz L (2009) On the independent origins of complex brains and neurons. Brain Behav Evol 74:177–190CrossRef
Zurück zum Zitat Moroz LL, Kohn AB (2015) Unbiased view of synaptic and neuronal gene complement in ctenophores: are there pan-neuronal and pan-synaptic genes across metazoa? Integr Comp Biol 55(6):1028–1049 Moroz LL, Kohn AB (2015) Unbiased view of synaptic and neuronal gene complement in ctenophores: are there pan-neuronal and pan-synaptic genes across metazoa? Integr Comp Biol 55(6):1028–1049
Zurück zum Zitat Moroz L, Kohn A (2016) Independent origins of neurons and synapses: insights from ctenophores. In: Philosophical transactions of the royal society of London B: biological sciences 371(1685):1–14CrossRef Moroz L, Kohn A (2016) Independent origins of neurons and synapses: insights from ctenophores. In: Philosophical transactions of the royal society of London B: biological sciences 371(1685):1–14CrossRef
Zurück zum Zitat Navlakha S, Barth A, Bar-Joseph Z (2015) Decreasing-rate pruning optimizes the construction of efficient and robust distributed networks. PLoS Comput Biol 11(7):1–23CrossRef Navlakha S, Barth A, Bar-Joseph Z (2015) Decreasing-rate pruning optimizes the construction of efficient and robust distributed networks. PLoS Comput Biol 11(7):1–23CrossRef
Zurück zum Zitat Nickel M (2010) Evolutionary emergence of synaptic nervous systems: what can we learn from the non-synaptic, nerveless porifera? Invertebr Biol 129(1):1–16MathSciNetCrossRef Nickel M (2010) Evolutionary emergence of synaptic nervous systems: what can we learn from the non-synaptic, nerveless porifera? Invertebr Biol 129(1):1–16MathSciNetCrossRef
Zurück zum Zitat Nickel M et al (2011) The contractile sponge epithelium sensu lato–body contraction of the demosponge tethya wilhelma is mediated by the pinacoderm. J Exp Biol 214(10):1692–1698CrossRef Nickel M et al (2011) The contractile sponge epithelium sensu lato–body contraction of the demosponge tethya wilhelma is mediated by the pinacoderm. J Exp Biol 214(10):1692–1698CrossRef
Zurück zum Zitat Niklas KJ, Newman SA (2013) The origins of multicellular organisms. Evol Dev 15(1):41–52CrossRef Niklas KJ, Newman SA (2013) The origins of multicellular organisms. Evol Dev 15(1):41–52CrossRef
Zurück zum Zitat Nilsson DE, Gisln L, Coates MM, Skogh C, Garm A (2005) Advanced optics in a jellyfish eye. Nature 435:201–205CrossRef Nilsson DE, Gisln L, Coates MM, Skogh C, Garm A (2005) Advanced optics in a jellyfish eye. Nature 435:201–205CrossRef
Zurück zum Zitat Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211(11):1792–1804CrossRef Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211(11):1792–1804CrossRef
Zurück zum Zitat Oliveira AG et al (2015) Circadian control sheds light on fungal bioluminescence. Curr Biol 25(7):964–968CrossRef Oliveira AG et al (2015) Circadian control sheds light on fungal bioluminescence. Curr Biol 25(7):964–968CrossRef
Zurück zum Zitat Oyarce P, Gurovich L (2011) Evidence for the transmission of information through electric potentials in injured avocado trees. J Plant Physiol 168(2):103–108CrossRef Oyarce P, Gurovich L (2011) Evidence for the transmission of information through electric potentials in injured avocado trees. J Plant Physiol 168(2):103–108CrossRef
Zurück zum Zitat Pantin C (1956) The origin of the nervous system. Publicazioni della Stazione Zoologica di Napoli 28:171–181 Pantin C (1956) The origin of the nervous system. Publicazioni della Stazione Zoologica di Napoli 28:171–181
Zurück zum Zitat Parker G (1919) Primitive nervous systems. Lippincott, New York Parker G (1919) Primitive nervous systems. Lippincott, New York
Zurück zum Zitat Paulsen O, Heggelund P (1996) Quantal properties of spontaneous epscs in neurones of the guinea-pig dorsal lateral geniculate nucleus. J Physiol 496(3):759–772CrossRef Paulsen O, Heggelund P (1996) Quantal properties of spontaneous epscs in neurones of the guinea-pig dorsal lateral geniculate nucleus. J Physiol 496(3):759–772CrossRef
Zurück zum Zitat Petri CA (1966) Communication with automata. Tech. Rep. RADC-TR-65–377. Griffiss Air Force Base, New York Petri CA (1966) Communication with automata. Tech. Rep. RADC-TR-65–377. Griffiss Air Force Base, New York
Zurück zum Zitat Polilov A (2008) Anatomy of the smallest of the coleoptera, feather-winged beetles from tribe nanosellini (coleoptera, ptiliidae) and limits to insect miniaturization. Entomol Rev 88:2633CrossRef Polilov A (2008) Anatomy of the smallest of the coleoptera, feather-winged beetles from tribe nanosellini (coleoptera, ptiliidae) and limits to insect miniaturization. Entomol Rev 88:2633CrossRef
Zurück zum Zitat Polilov AA (2012) The smallest insects evolve anucleate neurons. Arthropod Struct Dev 41(1):29–34 Polilov AA (2012) The smallest insects evolve anucleate neurons. Arthropod Struct Dev 41(1):29–34
Zurück zum Zitat Qian L, Soloveichik D, Winfree E (2011) Efficient turing-universal computation with DNA polymers. In: DNA computing and molecular programming, vol 6518. Springer International Publishing, pp 123–140 Qian L, Soloveichik D, Winfree E (2011) Efficient turing-universal computation with DNA polymers. In: DNA computing and molecular programming, vol 6518. Springer International Publishing, pp 123–140
Zurück zum Zitat Ramesh SA et al (2015) Gaba signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat Commun 6(7879):1–9 Ramesh SA et al (2015) Gaba signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat Commun 6(7879):1–9
Zurück zum Zitat Renard E et al (2009) Origin of the neuro-sensory system: new and expected insights from sponges. Integr Zool 4(3):294–308MathSciNetCrossRef Renard E et al (2009) Origin of the neuro-sensory system: new and expected insights from sponges. Integr Zool 4(3):294–308MathSciNetCrossRef
Zurück zum Zitat Roberts A (2007) Plasmodesmal Structure and Development. Plasmodesmata, pp. 1–32 Roberts A (2007) Plasmodesmal Structure and Development. Plasmodesmata, pp. 1–32
Zurück zum Zitat Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386–408CrossRef Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386–408CrossRef
Zurück zum Zitat Satterlie R (2002) Control of swimming in jellyfish: a comparative story. Can J Zool 80:1654–1669CrossRef Satterlie R (2002) Control of swimming in jellyfish: a comparative story. Can J Zool 80:1654–1669CrossRef
Zurück zum Zitat Satterlie RA (2011) Do jellyfish have central nervous systems? J Exp Biol 214(8):1215–1223CrossRef Satterlie RA (2011) Do jellyfish have central nervous systems? J Exp Biol 214(8):1215–1223CrossRef
Zurück zum Zitat Schmidt-Nielsen K (1984) Scaling: why is animal size so important?. Cambridge University Press, CambridgeCrossRef Schmidt-Nielsen K (1984) Scaling: why is animal size so important?. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Scialdone A, Howard M (2015) How plants manage food reserves at night: quantitative models and open questions. Front Plant Sci 6(204):1–7 Scialdone A, Howard M (2015) How plants manage food reserves at night: quantitative models and open questions. Front Plant Sci 6(204):1–7
Zurück zum Zitat Sibaoka T (1991) Rapid plant movements triggered by action potentials. Bot Mag 104(1):73–95CrossRef Sibaoka T (1991) Rapid plant movements triggered by action potentials. Bot Mag 104(1):73–95CrossRef
Zurück zum Zitat Siegelmann HT (1998) Neural networks and analog computation: beyond the turing limit (progress in theoretical computer science). Birkhäuser, Boston Siegelmann HT (1998) Neural networks and analog computation: beyond the turing limit (progress in theoretical computer science). Birkhäuser, Boston
Zurück zum Zitat Smith C, Pivovarova N, Reese T (2015) Coordinated feeding behavior in trichoplax, an animal without synapses. PLoS ONE 10(9):e0136,098CrossRef Smith C, Pivovarova N, Reese T (2015) Coordinated feeding behavior in trichoplax, an animal without synapses. PLoS ONE 10(9):e0136,098CrossRef
Zurück zum Zitat Smith C et al (2014) Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan trichoplax adhaerens. Curr Biol 24(14):1565–1572CrossRef Smith C et al (2014) Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan trichoplax adhaerens. Curr Biol 24(14):1565–1572CrossRef
Zurück zum Zitat Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal substrate for chemical kinetics. Proc Natl Acad Sci 107(12):5393–5398CrossRef Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal substrate for chemical kinetics. Proc Natl Acad Sci 107(12):5393–5398CrossRef
Zurück zum Zitat Sukhov V, Nerush V, Orlova L, Vodeneev V (2011) Simulation of action potential propagation in plants. J Theor Biol 291:47–55CrossRefMATH Sukhov V, Nerush V, Orlova L, Vodeneev V (2011) Simulation of action potential propagation in plants. J Theor Biol 291:47–55CrossRefMATH
Zurück zum Zitat Tagkopoulos I, Liu YC, Tavazoie S (2008) Predictive behavior within microbial genetic networks. Science 320:1313–1317CrossRef Tagkopoulos I, Liu YC, Tavazoie S (2008) Predictive behavior within microbial genetic networks. Science 320:1313–1317CrossRef
Zurück zum Zitat Thome C et al (2014) Axon-carrying dendrites convey privileged synaptic input in hippocampal neurons. Neuron 83(6):1418–1430CrossRef Thome C et al (2014) Axon-carrying dendrites convey privileged synaptic input in hippocampal neurons. Neuron 83(6):1418–1430CrossRef
Zurück zum Zitat Volkov A, Foster J, Markin V (2010) Signal transduction in mimosa pudica: biologically closed electrical circuits. Plant Cell Environ 33(5):816–827 Volkov A, Foster J, Markin V (2010) Signal transduction in mimosa pudica: biologically closed electrical circuits. Plant Cell Environ 33(5):816–827
Zurück zum Zitat Volkov AG, Markin VS (2015) Active and passive electrical signaling in plants. Prog Bot 76:143–176 Volkov AG, Markin VS (2015) Active and passive electrical signaling in plants. Prog Bot 76:143–176
Zurück zum Zitat Wall J, Xu J, Wang X (2002) Human brain plasticity: an emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Res Rev 39(23):181–215CrossRef Wall J, Xu J, Wang X (2002) Human brain plasticity: an emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Res Rev 39(23):181–215CrossRef
Zurück zum Zitat Wehner R (2005) Sensory physiology: brainless eyes. Nature 435(7039):157–159CrossRef Wehner R (2005) Sensory physiology: brainless eyes. Nature 435(7039):157–159CrossRef
Zurück zum Zitat Yan X et al (2009) Research progress on electrical signals in higher plants. Prog Nat Sci 19(5):531–541CrossRef Yan X et al (2009) Research progress on electrical signals in higher plants. Prog Nat Sci 19(5):531–541CrossRef
Zurück zum Zitat Yang R, Lenaghan SC, Zhang M, Xia L (2010) A mathematical model on the closing and opening mechanism for venus flytrap. Plant Signal Behav 5(8):968–978CrossRef Yang R, Lenaghan SC, Zhang M, Xia L (2010) A mathematical model on the closing and opening mechanism for venus flytrap. Plant Signal Behav 5(8):968–978CrossRef
Zurück zum Zitat Yokawa K et al (2014) Binary decisions in maize root behavior: Y-maze system as tool for unconventional computation in plants. Plant Signal Behav 10(5–6):381–390 Yokawa K et al (2014) Binary decisions in maize root behavior: Y-maze system as tool for unconventional computation in plants. Plant Signal Behav 10(5–6):381–390
Zurück zum Zitat Zhao D et al (2015) High-resolution non-contact measurement of the electrical activity of plants in situ using optical recording. Sci Rep 5:13,425CrossRef Zhao D et al (2015) High-resolution non-contact measurement of the electrical activity of plants in situ using optical recording. Sci Rep 5:13,425CrossRef
Zurück zum Zitat Zylberberg A et al (2011) The human turing machine: a neural framework for mental programs. Trends Cognit Sci 15(7):293–300 Zylberberg A et al (2011) The human turing machine: a neural framework for mental programs. Trends Cognit Sci 15(7):293–300
Metadaten
Titel
The influence of computational traits on the natural selection of the nervous system
verfasst von
Sergio Miguel-Tomé
Publikationsdatum
14.03.2017
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 2/2018
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-017-9619-0

Weitere Artikel der Ausgabe 2/2018

Natural Computing 2/2018 Zur Ausgabe

OriginalPaper

Preface