Skip to main content
Erschienen in: Experimental Mechanics 7/2017

03.03.2017

The Influence of Indenter Tip Imperfection and Deformability on Analysing Instrumented Indentation Tests at Shallow Depths of Penetration on Stiff and Hard Materials

verfasst von: V. Keryvin, L. Charleux, C. Bernard, M. Nivard

Erschienen in: Experimental Mechanics | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report on the difficulties of extracting plastic parameters from constitutive equations derived by instrumented indentation tests on hard and stiff materials at shallow depths of penetration. As a general rule, we refer here to materials with an elastic stiffness more than 10 % of that of the indenter and a yield strain higher than 1 %, as well as to penetration depths less than ∼ 5 times the characteristic tip defect length of the indenter. We experimentally tested such a material (an amorphous alloy) by nanoindentation. To describe the mechanical response of the test, namely the force-displacement curve, it is necessary to consider the combined effects of indenter tip imperfections and indenter deformability. For this purpose, an identification procedure has been carried out by performing numerical simulations (using Finite Element Analysis) with constitutive equations that are known to satisfactorily describe the behaviour of the tested material. We propose a straightforward procedure to address indenter tip imperfection and deformability, which consists of firstly taking account of a deformable indenter in the numerical simulations. This procedure also involves modifying the experimental curve by considering a truncated length to create artificially the material’s response to a perfectly sharp indentation. The truncated length is determined directly from the loading part of the force-displacement curve. We also show that ignoring one or both of these issues results in large errors in the plastic parameters extracted from the data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fischer-Cripps AC (2006) Introduction to Contact MEchanics. Mechanical Engineering Series, Berlin Heidelberg: Springer Berlin Heidelberg Fischer-Cripps AC (2006) Introduction to Contact MEchanics. Mechanical Engineering Series, Berlin Heidelberg: Springer Berlin Heidelberg
2.
Zurück zum Zitat Oliver W, Pharr G (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRef Oliver W, Pharr G (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRef
3.
Zurück zum Zitat Andrade-Campos A, Thuillier S, Pilvin P, Teixeira-Dias F (2007) On the determination of material parameters for internal variable thermoelastic-viscoplastic constitutive models. Int J Plast 23(8):1349–1379CrossRefMATH Andrade-Campos A, Thuillier S, Pilvin P, Teixeira-Dias F (2007) On the determination of material parameters for internal variable thermoelastic-viscoplastic constitutive models. Int J Plast 23(8):1349–1379CrossRefMATH
4.
Zurück zum Zitat Fischer-Cripps AC (2011) Nanoindentation. Springer, Berlin, HeidelbergCrossRef Fischer-Cripps AC (2011) Nanoindentation. Springer, Berlin, HeidelbergCrossRef
5.
Zurück zum Zitat Giannakopoulos A, Suresh S (1999) Determination of elastoplastic properties by instrumented sharp indentation, vol 40 Giannakopoulos A, Suresh S (1999) Determination of elastoplastic properties by instrumented sharp indentation, vol 40
6.
Zurück zum Zitat Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S (2001) Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater 49(19):3899–3918CrossRef Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S (2001) Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater 49(19):3899–3918CrossRef
7.
Zurück zum Zitat Casals O, Alcalá J (2005) The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments. Acta Mater 53:3545–3561CrossRef Casals O, Alcalá J (2005) The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments. Acta Mater 53:3545–3561CrossRef
8.
Zurück zum Zitat Lee J, Lee C, Kim B (2009) Reverse analysis of nano-indentation using different representative strains and residual indentation profiles. Mater Des 30:3395–3404CrossRef Lee J, Lee C, Kim B (2009) Reverse analysis of nano-indentation using different representative strains and residual indentation profiles. Mater Des 30:3395–3404CrossRef
9.
Zurück zum Zitat Warren AW, Guo YB (2006) Machined surface properties determined by nanoindentation: Experimental and FEA studies on the effects of surface integrity and tip geometry. Surf Coatings Technol 201(1-2):423–433CrossRef Warren AW, Guo YB (2006) Machined surface properties determined by nanoindentation: Experimental and FEA studies on the effects of surface integrity and tip geometry. Surf Coatings Technol 201(1-2):423–433CrossRef
10.
Zurück zum Zitat Oliver W, Pharr G (2004) Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, vol 19 Oliver W, Pharr G (2004) Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, vol 19
11.
Zurück zum Zitat Hochstetter G, Jimenez A, Loubet J (2006) Strain-rate effects on hardness of glassy polymers in the nanoscale range. Comparison between quasi-static and continuous stiffness measurements. J Macromol Sci part B 38(5-6):681– 692CrossRef Hochstetter G, Jimenez A, Loubet J (2006) Strain-rate effects on hardness of glassy polymers in the nanoscale range. Comparison between quasi-static and continuous stiffness measurements. J Macromol Sci part B 38(5-6):681– 692CrossRef
12.
Zurück zum Zitat Poon B, Rittel D, Ravichandran G (2008) An analysis of nanoindentation in elasto-plastic solids. Int J Solids Struct 45:6399– 6415CrossRefMATH Poon B, Rittel D, Ravichandran G (2008) An analysis of nanoindentation in elasto-plastic solids. Int J Solids Struct 45:6399– 6415CrossRefMATH
13.
Zurück zum Zitat Poon B, Rittel D, Ravichandran G (2008) An analysis of nanoindentation in linearly elastic solids. Int J Solids Struct 45(24):6018–6033CrossRefMATH Poon B, Rittel D, Ravichandran G (2008) An analysis of nanoindentation in linearly elastic solids. Int J Solids Struct 45(24):6018–6033CrossRefMATH
14.
Zurück zum Zitat Wang TH, Fang TH, Lin YC (2007) A numerical study of factors affecting the characterization of nanoindentation on silicon. Mater Sci Eng A 447(1-2):244–253CrossRef Wang TH, Fang TH, Lin YC (2007) A numerical study of factors affecting the characterization of nanoindentation on silicon. Mater Sci Eng A 447(1-2):244–253CrossRef
15.
Zurück zum Zitat Keryvin V, Vu X, Hoang V, Shen J (2010) On the deformation morphology of bulk metallic glasses underneath a Vickers indentation. J Alloys Compd 504:S41–S44CrossRef Keryvin V, Vu X, Hoang V, Shen J (2010) On the deformation morphology of bulk metallic glasses underneath a Vickers indentation. J Alloys Compd 504:S41–S44CrossRef
16.
Zurück zum Zitat Keryvin V (2008) Indentation as a probe for pressure sensitivity of metallic glasses. J Phys Condens Matter 20:114119CrossRef Keryvin V (2008) Indentation as a probe for pressure sensitivity of metallic glasses. J Phys Condens Matter 20:114119CrossRef
17.
Zurück zum Zitat Shen J, Chen Q, Sun J, Fan H, Wang G (2005) Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl Phys Lett 86(15):151907CrossRef Shen J, Chen Q, Sun J, Fan H, Wang G (2005) Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl Phys Lett 86(15):151907CrossRef
18.
Zurück zum Zitat Keryvin V, Hoang VH, Shen J (2009) Hardness, toughness, brittleness and cracking systems of an iron-based bulk metallic glass by indentation. Intermetallics 17(4):211–217CrossRef Keryvin V, Hoang VH, Shen J (2009) Hardness, toughness, brittleness and cracking systems of an iron-based bulk metallic glass by indentation. Intermetallics 17(4):211–217CrossRef
19.
Zurück zum Zitat VanLandingham MR, Juliano TF, Hagon MJ (2005) Measuring tip shape for instrumented indentation using atomic force microscopy. Meas Sci Technol 16(11):2173–2185CrossRef VanLandingham MR, Juliano TF, Hagon MJ (2005) Measuring tip shape for instrumented indentation using atomic force microscopy. Meas Sci Technol 16(11):2173–2185CrossRef
20.
Zurück zum Zitat Charleux L, Keryvin V, Bizet L (2015) abapy: Abapy_v1.0 Charleux L, Keryvin V, Bizet L (2015) abapy: Abapy_v1.0
21.
Zurück zum Zitat Chen W-F, Han D-J (2007) Plasticity for Structural Engineers. J. Ross Publishing Classics, Florida, USAMATH Chen W-F, Han D-J (2007) Plasticity for Structural Engineers. J. Ross Publishing Classics, Florida, USAMATH
22.
Zurück zum Zitat Donovan PE (1989) Plastic flow and fracture of Pd40Ni40P20 metallic glass under an indentor. J Mater Sci 24:523–535CrossRef Donovan PE (1989) Plastic flow and fracture of Pd40Ni40P20 metallic glass under an indentor. J Mater Sci 24:523–535CrossRef
23.
Zurück zum Zitat Patnaik MNM, Narasimhan R, Ramamurty U (2004) Spherical indentation response of metallic glasses. Acta Mater 52(11):3335–3345CrossRef Patnaik MNM, Narasimhan R, Ramamurty U (2004) Spherical indentation response of metallic glasses. Acta Mater 52(11):3335–3345CrossRef
24.
Zurück zum Zitat Keryvin V, Crosnier R, Laniel R, Hoang VH, Sangleboeuf J-C (2008) Indentation and scratching mechanisms of a ZrCuAlNi bulk metallic glass. J Phys D Appl Phys 41:074029CrossRef Keryvin V, Crosnier R, Laniel R, Hoang VH, Sangleboeuf J-C (2008) Indentation and scratching mechanisms of a ZrCuAlNi bulk metallic glass. J Phys D Appl Phys 41:074029CrossRef
25.
Zurück zum Zitat Brest J, Keryvin V, Longére P, Yokoyama Y (2014) Insight into plasticity mechanisms in metallic glasses by means of a Brazilian test and numerical simulation. J Alloys Compd 586:S236–S241CrossRef Brest J, Keryvin V, Longére P, Yokoyama Y (2014) Insight into plasticity mechanisms in metallic glasses by means of a Brazilian test and numerical simulation. J Alloys Compd 586:S236–S241CrossRef
26.
Zurück zum Zitat Cheng YT, Cheng CM (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R Reports 44(4-5):91–150CrossRef Cheng YT, Cheng CM (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R Reports 44(4-5):91–150CrossRef
27.
Zurück zum Zitat Tabor D (1956) The physical meaning of indentation and scratch hardness. Br J Appl Phys 7(5):159CrossRef Tabor D (1956) The physical meaning of indentation and scratch hardness. Br J Appl Phys 7(5):159CrossRef
28.
Zurück zum Zitat Qu RT, Liu ZQ, Wang RF, Zhang ZF (2015) Yield strength and yield strain of metallic glasses and their correlations with glass transition temperature. J Alloys Compd 637:44–54CrossRef Qu RT, Liu ZQ, Wang RF, Zhang ZF (2015) Yield strength and yield strain of metallic glasses and their correlations with glass transition temperature. J Alloys Compd 637:44–54CrossRef
29.
Zurück zum Zitat Keryvin V, Eswar Prasad K, Gueguen Y, Sanglebæuf J-C, Ramamurty U (2008) Temperature dependence of mechanical properties and pressure sensitivity in metallic glasses below glass transition. Philos Mag 88:1773–1790CrossRef Keryvin V, Eswar Prasad K, Gueguen Y, Sanglebæuf J-C, Ramamurty U (2008) Temperature dependence of mechanical properties and pressure sensitivity in metallic glasses below glass transition. Philos Mag 88:1773–1790CrossRef
30.
Zurück zum Zitat Gadelrab K, Bonilla F, Chiesa M (2012) Densification modeling of fused silica under nanoindentation. J Non Cryst Solids 358:392–398CrossRef Gadelrab K, Bonilla F, Chiesa M (2012) Densification modeling of fused silica under nanoindentation. J Non Cryst Solids 358:392–398CrossRef
Metadaten
Titel
The Influence of Indenter Tip Imperfection and Deformability on Analysing Instrumented Indentation Tests at Shallow Depths of Penetration on Stiff and Hard Materials
verfasst von
V. Keryvin
L. Charleux
C. Bernard
M. Nivard
Publikationsdatum
03.03.2017
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 7/2017
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-017-0267-1

Weitere Artikel der Ausgabe 7/2017

Experimental Mechanics 7/2017 Zur Ausgabe

EditorialNotes

Preface

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.