Skip to main content
Erschienen in: Cognitive Neurodynamics 4/2014

01.08.2014 | Research Article

The influence of ion concentrations on the dynamic behavior of the Hodgkin–Huxley model-based cortical network

verfasst von: M. Emin Tagluk, Ramazan Tekin

Erschienen in: Cognitive Neurodynamics | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Action potentials (APs) in the form of very short pulses arise when the cell is excited by any internal or external stimulus exceeding the critical threshold of the membrane. During AP generation, the membrane potential completes its natural cycle through typical phases that can be formatted by ion channels, gates and ion concentrations, as well as the synaptic excitation rate. On the basis of the Hodgkin–Huxley cell model, a cortical network consistent with the real anatomic structure is realized with randomly interrelated small population of neurons to simulate a cerebral cortex segment. Using this model, we investigated the effects of Na+ and K+ ion concentrations on the outcome of this network in terms of regularity, phase locking, and synchronization. The results suggested that Na+ concentration does slightly affect the amplitude but not considerably affects the other parameters specified by depolarization and repolarization. K+ concentration significantly influences the form, regularity, and synchrony of the network-generated APs. No previous study dealing directly with the effects of both Na+ and K+ ion concentrations on regularity and synchronization of the simulated cortical network-generated APs, allowing for the comparison of results obtained using our methods, was encountered in the literature. The results, however, were consistent with those obtained through studies concerning resonance and synchronization from another perspective and with the information revealed through physiological and pharmacological experiments concerning changing ion concentrations or blocking ion channels. Our results demonstrated that the regularity and reliability of brain functions have a strong relationship with cellular ion concentrations, and suggested the management of the dynamic behavior of the cellular network with ion concentrations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baker PF, Hodgkin AL, Shaw TI (1962) The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J Physiol 164:355–374PubMedCentralPubMed Baker PF, Hodgkin AL, Shaw TI (1962) The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J Physiol 164:355–374PubMedCentralPubMed
Zurück zum Zitat Bazhenov M, Timofeev I, Fröhlich F, Sejnowski TJ (2008) Cellular and network mechanisms of electrographic seizures. Drug Discov Today Dis Models 5(1):45–57PubMedCentralPubMedCrossRef Bazhenov M, Timofeev I, Fröhlich F, Sejnowski TJ (2008) Cellular and network mechanisms of electrographic seizures. Drug Discov Today Dis Models 5(1):45–57PubMedCentralPubMedCrossRef
Zurück zum Zitat Boucetta S, Chauvette S, Bazhenov M, Timofeev I (2008) Focal generation of paroxysmal fast runs during electrographic seizures. Epilepsia 49(11):1925–1940PubMedCentralPubMedCrossRef Boucetta S, Chauvette S, Bazhenov M, Timofeev I (2008) Focal generation of paroxysmal fast runs during electrographic seizures. Epilepsia 49(11):1925–1940PubMedCentralPubMedCrossRef
Zurück zum Zitat Brady AJ, Woodbury JW (1960) The sodium-potassium hypothesis as the basis of electrical activity in frog ventricle. J Physiol 154:385–407PubMedCentralPubMed Brady AJ, Woodbury JW (1960) The sodium-potassium hypothesis as the basis of electrical activity in frog ventricle. J Physiol 154:385–407PubMedCentralPubMed
Zurück zum Zitat Brette R, Rudolph M, Carnevale T, Hines M, Beeman D et al (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23(3):349–398PubMedCentralPubMedCrossRef Brette R, Rudolph M, Carnevale T, Hines M, Beeman D et al (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23(3):349–398PubMedCentralPubMedCrossRef
Zurück zum Zitat Cressman JR, Ullah G, Schiff SJ, Barreto E (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. J Comput Neurosci 26(2):159–170PubMedCentralPubMedCrossRef Cressman JR, Ullah G, Schiff SJ, Barreto E (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. J Comput Neurosci 26(2):159–170PubMedCentralPubMedCrossRef
Zurück zum Zitat Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge
Zurück zum Zitat Destexhe A (2009) Self-sustained asynchronous irregular states and up–down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. J Comput Neurosci 27:493–506PubMedCrossRef Destexhe A (2009) Self-sustained asynchronous irregular states and up–down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. J Comput Neurosci 27:493–506PubMedCrossRef
Zurück zum Zitat Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81(4):1531–1547PubMed Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81(4):1531–1547PubMed
Zurück zum Zitat Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1):13–24PubMedCentralPubMedCrossRef Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1):13–24PubMedCentralPubMedCrossRef
Zurück zum Zitat Diamond J, Gray JAB, Inman DR (1958) The relation between receptor potentials and the concentration of sodium ions. J Physiol 142(2):382–394PubMedCentralPubMed Diamond J, Gray JAB, Inman DR (1958) The relation between receptor potentials and the concentration of sodium ions. J Physiol 142(2):382–394PubMedCentralPubMed
Zurück zum Zitat Ebert U, Cramer S, Löscher W (1997) Phenytoin’s effect on the spread of seizure activity in the amygdala kindling model. Naunyn Schmiedebergs Arch Pharmacol 356(3):341–347PubMedCrossRef Ebert U, Cramer S, Löscher W (1997) Phenytoin’s effect on the spread of seizure activity in the amygdala kindling model. Naunyn Schmiedebergs Arch Pharmacol 356(3):341–347PubMedCrossRef
Zurück zum Zitat Fares TE (2010) Structure and plasticity potential of neural networks in the cerebral cortex (Doctoral dissertation). ProQuest Dissertations and Theses (Publication Number: AAI3412080) Fares TE (2010) Structure and plasticity potential of neural networks in the cerebral cortex (Doctoral dissertation). ProQuest Dissertations and Theses (Publication Number: AAI3412080)
Zurück zum Zitat Fröhlich F, Bazhenov M (2006) Coexistence of tonic firing and bursting in cortical neurons. Phys Rev E 74(3):031922CrossRef Fröhlich F, Bazhenov M (2006) Coexistence of tonic firing and bursting in cortical neurons. Phys Rev E 74(3):031922CrossRef
Zurück zum Zitat Fröhlich F, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2006) Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability. J Neurosci 26(3):6153–6162PubMedCentralPubMedCrossRef Fröhlich F, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2006) Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability. J Neurosci 26(3):6153–6162PubMedCentralPubMedCrossRef
Zurück zum Zitat Fröhlich F, Bazhenov M, Iragui-Madoz V, Sejnowski TJ (2008) Potassium dynamics in the epileptic cortex: new insights on an old topic. Neuroscientist 14(5):422–433PubMedCentralPubMedCrossRef Fröhlich F, Bazhenov M, Iragui-Madoz V, Sejnowski TJ (2008) Potassium dynamics in the epileptic cortex: new insights on an old topic. Neuroscientist 14(5):422–433PubMedCentralPubMedCrossRef
Zurück zum Zitat Fröhlich F, Sejnowski TJ, Bazhenov M (2010) Network bistability mediates spontaneous transitions between normal and pathological brain states. J Neurosci 30(32):10734–10743PubMedCentralPubMedCrossRef Fröhlich F, Sejnowski TJ, Bazhenov M (2010) Network bistability mediates spontaneous transitions between normal and pathological brain states. J Neurosci 30(32):10734–10743PubMedCentralPubMedCrossRef
Zurück zum Zitat Fulpius B, Baumann F (1969) Effects of sodium, potassium, and calcium ions on slow and spike potentials in single photoreceptor cells. J Gen Physiol 53(5):541–561PubMedCentralPubMedCrossRef Fulpius B, Baumann F (1969) Effects of sodium, potassium, and calcium ions on slow and spike potentials in single photoreceptor cells. J Gen Physiol 53(5):541–561PubMedCentralPubMedCrossRef
Zurück zum Zitat Gabbiani F, Koch C (1998) Principles of spike train analysis. In: Koch C, Segev I (eds) Methods in neuronal modeling: from ions to networks, 2nd edn. MIT Press, Cambridge, pp 313–360 Gabbiani F, Koch C (1998) Principles of spike train analysis. In: Koch C, Segev I (eds) Methods in neuronal modeling: from ions to networks, 2nd edn. MIT Press, Cambridge, pp 313–360
Zurück zum Zitat Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32(4):613–636PubMed Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32(4):613–636PubMed
Zurück zum Zitat Gong Y, Hao Y, Xie Y (2010) Channel block-optimized spiking activity of Hodgkin–Huxley neurons on random networks. Phys A 389(2):349–357CrossRef Gong Y, Hao Y, Xie Y (2010) Channel block-optimized spiking activity of Hodgkin–Huxley neurons on random networks. Phys A 389(2):349–357CrossRef
Zurück zum Zitat Goodman D, Brette R (2008) Brian: a simulator for spiking neural networks in Python. Front Neuroinform 2(5):1–10 Goodman D, Brette R (2008) Brian: a simulator for spiking neural networks in Python. Front Neuroinform 2(5):1–10
Zurück zum Zitat Grafstein B (1956) Mechanism of spreading cortical depression. J Neurophysiol 19:154–171PubMed Grafstein B (1956) Mechanism of spreading cortical depression. J Neurophysiol 19:154–171PubMed
Zurück zum Zitat Hille B (2001) Ionic channels of excitable membranes, 3rd edn. Sinauer, Sunderland Hille B (2001) Ionic channels of excitable membranes, 3rd edn. Sinauer, Sunderland
Zurück zum Zitat Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544PubMedCentralPubMed Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544PubMedCentralPubMed
Zurück zum Zitat Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108(1):37–77PubMedCentralPubMed Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108(1):37–77PubMedCentralPubMed
Zurück zum Zitat Huxley AF, Stämpfli R (1951) Effect of potassium and sodium on resting and action potentials of single myelinated nerve fibres. J Physiol 112(3–4):496–508PubMedCentralPubMed Huxley AF, Stämpfli R (1951) Effect of potassium and sodium on resting and action potentials of single myelinated nerve fibres. J Physiol 112(3–4):496–508PubMedCentralPubMed
Zurück zum Zitat Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge
Zurück zum Zitat Izhikevich EM, Gally JA, Edelman GM (2004) Spike-timing dynamics of neuronal groups. Cereb Cortex 14(8):933–944PubMedCrossRef Izhikevich EM, Gally JA, Edelman GM (2004) Spike-timing dynamics of neuronal groups. Cereb Cortex 14(8):933–944PubMedCrossRef
Zurück zum Zitat Kager H, Wadman WJ, Somjen GG (2000) Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J Neurophysiol 84(1):495–512PubMed Kager H, Wadman WJ, Somjen GG (2000) Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J Neurophysiol 84(1):495–512PubMed
Zurück zum Zitat Kager H, Wadman WJ, Somjen GG (2002) Conditions for the triggering of spreading depression studied with computer simulations. J Neurophysiol 88(5):2700–2712PubMedCrossRef Kager H, Wadman WJ, Somjen GG (2002) Conditions for the triggering of spreading depression studied with computer simulations. J Neurophysiol 88(5):2700–2712PubMedCrossRef
Zurück zum Zitat Kikuchi R, Naito K, Tanaka I (1962) Effect of sodium and potassium ions on the electrical activity of single cells in the lateral eye of the horseshoe crab. J Physiol 161(2):319–343PubMedCentralPubMed Kikuchi R, Naito K, Tanaka I (1962) Effect of sodium and potassium ions on the electrical activity of single cells in the lateral eye of the horseshoe crab. J Physiol 161(2):319–343PubMedCentralPubMed
Zurück zum Zitat Koch C, Mo CH, Softky W (2003) Single-cell models. In: Arbib MA (ed) The handbook of brain theory and neural networks, 2nd edn. MIT Press, Cambridge, pp 1044–1049 Koch C, Mo CH, Softky W (2003) Single-cell models. In: Arbib MA (ed) The handbook of brain theory and neural networks, 2nd edn. MIT Press, Cambridge, pp 1044–1049
Zurück zum Zitat Krishnan GP, Bazhenov M (2011) Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. J Neurosci 31(24):8870–8882PubMedCentralPubMedCrossRef Krishnan GP, Bazhenov M (2011) Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. J Neurosci 31(24):8870–8882PubMedCentralPubMedCrossRef
Zurück zum Zitat Nawrot MP (2010) Analysis and interpretation of interval and count variability in neural spike trains. In: Grün S, Rotter S (eds) Analysis of parallel spike trains. Springer, New York, pp 37–58CrossRef Nawrot MP (2010) Analysis and interpretation of interval and count variability in neural spike trains. In: Grün S, Rotter S (eds) Analysis of parallel spike trains. Springer, New York, pp 37–58CrossRef
Zurück zum Zitat Niedergerke R, Orkand RK (1966) The dependence of the action potential of the frog’s heart on the external and intracellular sodium concentrations. J Physiol 184(2):312–334PubMedCentralPubMed Niedergerke R, Orkand RK (1966) The dependence of the action potential of the frog’s heart on the external and intracellular sodium concentrations. J Physiol 184(2):312–334PubMedCentralPubMed
Zurück zum Zitat Ostby I, Oyehaug L, Einevoll GT, Nagelhus EA, Plahte E, Zeuthen T et al (2009) Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLoS Comput Biol 5(1):e1000272PubMedCentralPubMedCrossRef Ostby I, Oyehaug L, Einevoll GT, Nagelhus EA, Plahte E, Zeuthen T et al (2009) Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLoS Comput Biol 5(1):e1000272PubMedCentralPubMedCrossRef
Zurück zum Zitat Overton E (1902) Beiträge zur allgemeinen Muskel-und Nervenphysiologie. Pflüg Arch Eur J Physiol 92(3):115–280CrossRef Overton E (1902) Beiträge zur allgemeinen Muskel-und Nervenphysiologie. Pflüg Arch Eur J Physiol 92(3):115–280CrossRef
Zurück zum Zitat Ozer M, Perc M, Uzuntarla M (2009a) Stochastic resonance on Newman–Watts networks of Hodgkin–Huxley neurons with local periodic driving. Phys Lett A 373(10):964–968CrossRef Ozer M, Perc M, Uzuntarla M (2009a) Stochastic resonance on Newman–Watts networks of Hodgkin–Huxley neurons with local periodic driving. Phys Lett A 373(10):964–968CrossRef
Zurück zum Zitat Ozer M, Perc M, Uzuntarla M (2009b) Controlling the spontaneous spiking regularity via channel blocking on Newman–Watts networks of Hodgkin–Huxley neurons. EPL 86(4):40008CrossRef Ozer M, Perc M, Uzuntarla M (2009b) Controlling the spontaneous spiking regularity via channel blocking on Newman–Watts networks of Hodgkin–Huxley neurons. EPL 86(4):40008CrossRef
Zurück zum Zitat Ozer M, Uzuntarla M, Perc M, Graham LJ (2009c) Spike latency and jitter of neuronal membrane patches with stochastic Hodgkin–Huxley channels. J Theor Biol 261(1):83–92PubMedCrossRef Ozer M, Uzuntarla M, Perc M, Graham LJ (2009c) Spike latency and jitter of neuronal membrane patches with stochastic Hodgkin–Huxley channels. J Theor Biol 261(1):83–92PubMedCrossRef
Zurück zum Zitat Somjen GG (2002) Ion regulation in the brain: implications for pathophysiology. Neuroscientist 8(3):254–267PubMedCrossRef Somjen GG (2002) Ion regulation in the brain: implications for pathophysiology. Neuroscientist 8(3):254–267PubMedCrossRef
Zurück zum Zitat Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25(2):349–365PubMedCrossRef Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25(2):349–365PubMedCrossRef
Zurück zum Zitat Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3(9):919–926PubMedCrossRef Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3(9):919–926PubMedCrossRef
Zurück zum Zitat Sun X, Perc M, Lu QS, Kurths J (2008) Spatial coherence resonance on diffusive and small-world networks of Hodgkin–Huxley neurons. Chaos 18(2):023102PubMedCrossRef Sun X, Perc M, Lu QS, Kurths J (2008) Spatial coherence resonance on diffusive and small-world networks of Hodgkin–Huxley neurons. Chaos 18(2):023102PubMedCrossRef
Zurück zum Zitat Sun XJ, Lei JZ, Perc M, Lu QS, Lv SJ (2011) Effects of channel noise on firing coherence of small-world Hodgkin–Huxley neuronal networks. Euro Phys J B 79(1):61–66CrossRef Sun XJ, Lei JZ, Perc M, Lu QS, Lv SJ (2011) Effects of channel noise on firing coherence of small-world Hodgkin–Huxley neuronal networks. Euro Phys J B 79(1):61–66CrossRef
Zurück zum Zitat Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M (2000) Origin and slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10(12):1185–1199PubMedCrossRef Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M (2000) Origin and slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10(12):1185–1199PubMedCrossRef
Zurück zum Zitat Traub RD, Miles R (1991) Neuronal networks of the hippocampus. Cambridge University Press, CambridgeCrossRef Traub RD, Miles R (1991) Neuronal networks of the hippocampus. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Traub RD, Miles R, Buzsáki G (1992) Computer simulation of carbachol-driven rhythmic population oscillations in the CA3 region of the in vitro rat hippocampus. J Physiol 451(1):653–672PubMedCentralPubMed Traub RD, Miles R, Buzsáki G (1992) Computer simulation of carbachol-driven rhythmic population oscillations in the CA3 region of the in vitro rat hippocampus. J Physiol 451(1):653–672PubMedCentralPubMed
Zurück zum Zitat Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys Rev 36(5):823–841CrossRef Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys Rev 36(5):823–841CrossRef
Zurück zum Zitat Volman V, Bazhenov M, Sejnowski TJ (2012) Computational models of neuron-astrocyte interaction in epilepsy. Front Comput Neurosci 6(58):1–10 Volman V, Bazhenov M, Sejnowski TJ (2012) Computational models of neuron-astrocyte interaction in epilepsy. Front Comput Neurosci 6(58):1–10
Zurück zum Zitat Wang Q, Perc M, Duan Z, Chen G (2008a) Delay-enhanced coherence of spiral waves in noisy Hodgkin–Huxley neuronal networks. Phys Lett A 372(35):5681–5687CrossRef Wang Q, Perc M, Duan Z, Chen G (2008a) Delay-enhanced coherence of spiral waves in noisy Hodgkin–Huxley neuronal networks. Phys Lett A 372(35):5681–5687CrossRef
Zurück zum Zitat Wang Q, Duan Z, Perc M, Chen G (2008b) Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability. EPL 83(5):50008CrossRef Wang Q, Duan Z, Perc M, Chen G (2008b) Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability. EPL 83(5):50008CrossRef
Zurück zum Zitat Wang Q, Perc M, Duan Z, Chen G (2009) Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys Rev E 80(2):026206CrossRef Wang Q, Perc M, Duan Z, Chen G (2009) Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys Rev E 80(2):026206CrossRef
Zurück zum Zitat Wang QY, Perc M, Duan ZS, Chen GR (2010a) Spatial coherence resonance in delayed Hodgkin–Huxley neuronal networks. Int J Mod Phys B 24(9):1201–1213CrossRef Wang QY, Perc M, Duan ZS, Chen GR (2010a) Spatial coherence resonance in delayed Hodgkin–Huxley neuronal networks. Int J Mod Phys B 24(9):1201–1213CrossRef
Zurück zum Zitat Wang Q, Perc M, Duan Z, Chen G (2010b) Impact of delays and rewiring on the dynamics of small-world neuronal networks with two types of coupling. Phys A 389(16):3299–3306CrossRef Wang Q, Perc M, Duan Z, Chen G (2010b) Impact of delays and rewiring on the dynamics of small-world neuronal networks with two types of coupling. Phys A 389(16):3299–3306CrossRef
Zurück zum Zitat Zahar Y, Reches A, Gutfreund Y (2009) Multisensory enhancement in the optic tectum of the barn owl: spike count and spike timing. J Neurophysiol 101(5):2380–2394PubMedCrossRef Zahar Y, Reches A, Gutfreund Y (2009) Multisensory enhancement in the optic tectum of the barn owl: spike count and spike timing. J Neurophysiol 101(5):2380–2394PubMedCrossRef
Metadaten
Titel
The influence of ion concentrations on the dynamic behavior of the Hodgkin–Huxley model-based cortical network
verfasst von
M. Emin Tagluk
Ramazan Tekin
Publikationsdatum
01.08.2014
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 4/2014
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-014-9281-5

Weitere Artikel der Ausgabe 4/2014

Cognitive Neurodynamics 4/2014 Zur Ausgabe

Neuer Inhalt