Skip to main content
Erschienen in: Journal of Materials Science 18/2020

19.03.2020 | Composites & nanocomposites

The interaction between N,N-dimethylacrylamide and pristine graphene and its role in fabricating a strong nanocomposite hydrogel

verfasst von: Ailin Gao, Shuju Chen, Shuai Zhao, Guangfa Zhang, Jian Cui, Yehai Yan

Erschienen in: Journal of Materials Science | Ausgabe 18/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, mechanically strong and electrically conductive poly(N,N-dimethylacrylamide) (PDMAA)/pristine graphene (GR) nanocomposite hydrogel was synthesized by directly dispersing pristine GR into N,N-dimethylacrylamide (DMAA) monomers, which have been commonly used to prepare polymeric hydrogel as reactive monomers. Results showed that the introduction of GR nanosheets as physical cross-linking and its cooperation with organic cross-linker N,N-methylene bisacrylamide (BIS) were found to efficiently improve the mechanical strength, dimensional homogeneity of pore structure, thermal and electrical conductivity of resultant PDMAA hydrogels. More importantly, the intrinsic interaction between DMAA monomer and GR was systematically analyzed by ultraviolet–visible (UV–Vis) spectrophotometer, nuclear magnetic resonance (1H NMR) and rheological test for the first time. These studies help us understand the formation mechanism of PDMAA hydrogel when graphene was added, as well as the fundamental parameters that govern the properties of hydrogels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pan C, Liu L, Gai G (2017) Recent progress of graphene-containing polymer hydrogels: preparations, properties, and applications. Macromol Mater Eng 302:184–198CrossRef Pan C, Liu L, Gai G (2017) Recent progress of graphene-containing polymer hydrogels: preparations, properties, and applications. Macromol Mater Eng 302:184–198CrossRef
2.
Zurück zum Zitat Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50:1475–1486CrossRef Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50:1475–1486CrossRef
3.
Zurück zum Zitat Homaeigohar S, Tsai TY, Young TH, Yang HJ, Ji YR (2019) An electroactive alginate hydrogel nanocomposite reinforced by functionalized graphite nanofilaments for neural tissue engineering. Carbohydr Polym 224:1–13CrossRef Homaeigohar S, Tsai TY, Young TH, Yang HJ, Ji YR (2019) An electroactive alginate hydrogel nanocomposite reinforced by functionalized graphite nanofilaments for neural tissue engineering. Carbohydr Polym 224:1–13CrossRef
4.
Zurück zum Zitat Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453CrossRef Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453CrossRef
5.
Zurück zum Zitat Haraguchi K, Uyama K, Tanimoto H (2011) Self-healing in nanocomposite hydrogels. Macromol Rapid Commun 32:1253–1258CrossRef Haraguchi K, Uyama K, Tanimoto H (2011) Self-healing in nanocomposite hydrogels. Macromol Rapid Commun 32:1253–1258CrossRef
6.
Zurück zum Zitat Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32:277–289CrossRef Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32:277–289CrossRef
7.
Zurück zum Zitat Sabzi M, Samadi N, Abbasi F, Mahdavinia GR, Babaahmadi M (2017) Bioinspired fully physically cross-linked double network hydrogels with a robust, tough and self-healing structure. Mater Sci Eng C Mater Biol Appl 74:374–381CrossRef Sabzi M, Samadi N, Abbasi F, Mahdavinia GR, Babaahmadi M (2017) Bioinspired fully physically cross-linked double network hydrogels with a robust, tough and self-healing structure. Mater Sci Eng C Mater Biol Appl 74:374–381CrossRef
8.
Zurück zum Zitat Shi Y, Peng L, Yu G (2015) Nanostructured conducting polymer hydrogels for energy storage applications. Nanoscale 7:12796–12806CrossRef Shi Y, Peng L, Yu G (2015) Nanostructured conducting polymer hydrogels for energy storage applications. Nanoscale 7:12796–12806CrossRef
9.
Zurück zum Zitat Haraguchi K (2007) Nanocomposite hydrogels. Curr Opin Solid St Mater Sci 11:47–54CrossRef Haraguchi K (2007) Nanocomposite hydrogels. Curr Opin Solid St Mater Sci 11:47–54CrossRef
10.
Zurück zum Zitat Wang T, Huang J, Yang Y, Zhang E, Sun W, Tong Z (2015) Bioinspired smart actuator based on graphene oxide-polymer hybrid hydrogels. ACS Appl Mater Interfaces 7:23423–23430CrossRef Wang T, Huang J, Yang Y, Zhang E, Sun W, Tong Z (2015) Bioinspired smart actuator based on graphene oxide-polymer hybrid hydrogels. ACS Appl Mater Interfaces 7:23423–23430CrossRef
11.
Zurück zum Zitat Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972CrossRef Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972CrossRef
12.
Zurück zum Zitat Chen F, An W, Li Y, Liang Y, Cui W (2018) Fabricating 3D porous PANI/TiO2–graphene hydrogel for the enhanced UV-light photocatalytic degradation of BPA. Appl Surf Sci 427:123–132CrossRef Chen F, An W, Li Y, Liang Y, Cui W (2018) Fabricating 3D porous PANI/TiO2–graphene hydrogel for the enhanced UV-light photocatalytic degradation of BPA. Appl Surf Sci 427:123–132CrossRef
13.
Zurück zum Zitat Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules 36:5732–5741CrossRef Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules 36:5732–5741CrossRef
14.
Zurück zum Zitat Wu D, Yi M, Duan H, Xu J, Wang Q (2016) Tough TiO2–rGO–PDMAA nanocomposite hydrogel via one-pot UV polymerization and reduction for photodegradation of methylene blue. Carbon 108:394–403CrossRef Wu D, Yi M, Duan H, Xu J, Wang Q (2016) Tough TiO2–rGO–PDMAA nanocomposite hydrogel via one-pot UV polymerization and reduction for photodegradation of methylene blue. Carbon 108:394–403CrossRef
15.
Zurück zum Zitat Xu D, Bhatnagar D, Gersappe D, Sokolov JC, Rafailovich MH, Lombardi J (2015) Rheology of poly(N-isopropylacrylamide)–clay nanocomposite hydrogels. Macromolecules 48:840–846CrossRef Xu D, Bhatnagar D, Gersappe D, Sokolov JC, Rafailovich MH, Lombardi J (2015) Rheology of poly(N-isopropylacrylamide)–clay nanocomposite hydrogels. Macromolecules 48:840–846CrossRef
16.
Zurück zum Zitat Mourycova J, Datta KKR, Prochazkova A, Plotena M, Enev V, Smilek J, Masilko J, Pekar M (2018) Facile synthesis and rheological characterization of nanocomposite hyaluronan-organoclay hydrogels. Int J Biol Macromol 111:680–684CrossRef Mourycova J, Datta KKR, Prochazkova A, Plotena M, Enev V, Smilek J, Masilko J, Pekar M (2018) Facile synthesis and rheological characterization of nanocomposite hyaluronan-organoclay hydrogels. Int J Biol Macromol 111:680–684CrossRef
17.
Zurück zum Zitat Ramon-Azcon J, Ahadian S, Estili M, Liang X, Ostrovidov S, Kaji H, Shiku H, Ramalingam M, Nakajima K, Sakka Y, Khademhosseini A, Matsue T (2013) Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv Mater 25:4028–4034CrossRef Ramon-Azcon J, Ahadian S, Estili M, Liang X, Ostrovidov S, Kaji H, Shiku H, Ramalingam M, Nakajima K, Sakka Y, Khademhosseini A, Matsue T (2013) Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv Mater 25:4028–4034CrossRef
18.
Zurück zum Zitat Cong HP, Qiu JH, Yu SH (2015) Thermoresponsive poly(N-isopropylacrylamide)/ graphene/Au nanocomposite hydrogel for water treatment by a laser-assisted approach. Small 11:1165–1170CrossRef Cong HP, Qiu JH, Yu SH (2015) Thermoresponsive poly(N-isopropylacrylamide)/ graphene/Au nanocomposite hydrogel for water treatment by a laser-assisted approach. Small 11:1165–1170CrossRef
19.
Zurück zum Zitat Alam A, Zhang Y, Kuan HC, Lee SH, Ma J (2018) Polymer composite hydrogels containing carbon nanomaterials-morphology and mechanical and functional performance. Prog Polym Sci 77:1–18CrossRef Alam A, Zhang Y, Kuan HC, Lee SH, Ma J (2018) Polymer composite hydrogels containing carbon nanomaterials-morphology and mechanical and functional performance. Prog Polym Sci 77:1–18CrossRef
20.
Zurück zum Zitat Du G, Nie L, Gao G, Sun Y, Hou R, Zhang H, Chen T, Fu J (2015) Tough and biocompatible hydrogels based on in situ interpenetrating networks of dithiol-connected graphene oxide and poly(vinyl alcohol). ACS Appl Mater Interfaces 7:3003–3008CrossRef Du G, Nie L, Gao G, Sun Y, Hou R, Zhang H, Chen T, Fu J (2015) Tough and biocompatible hydrogels based on in situ interpenetrating networks of dithiol-connected graphene oxide and poly(vinyl alcohol). ACS Appl Mater Interfaces 7:3003–3008CrossRef
21.
Zurück zum Zitat Alam A, Kuan HC, Zhao Z, Xu J, Ma J (2017) Novel polyacrylamide hydrogels by highly conductive, water-processable graphene. Compos Part A Appl Sci Manuf 93:1–9CrossRef Alam A, Kuan HC, Zhao Z, Xu J, Ma J (2017) Novel polyacrylamide hydrogels by highly conductive, water-processable graphene. Compos Part A Appl Sci Manuf 93:1–9CrossRef
22.
Zurück zum Zitat Huang W, Shen J, Li N, Ye M (2015) Study on a new polymer/graphene oxide/clay double network hydrogel with improved response rate and mechanical properties. Polym Eng Sci 55:1361–1366CrossRef Huang W, Shen J, Li N, Ye M (2015) Study on a new polymer/graphene oxide/clay double network hydrogel with improved response rate and mechanical properties. Polym Eng Sci 55:1361–1366CrossRef
23.
Zurück zum Zitat Lo CW, Zhu D, Jiang H (2011) An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter 7:5604–5609CrossRef Lo CW, Zhu D, Jiang H (2011) An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter 7:5604–5609CrossRef
24.
Zurück zum Zitat Jo H, Sim M, Kim S, Yang S, Yoo Y, Park JH, Yoon TH, Kim MG, Lee JY (2017) Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Acta Biomater 48:100–109CrossRef Jo H, Sim M, Kim S, Yang S, Yoo Y, Park JH, Yoon TH, Kim MG, Lee JY (2017) Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Acta Biomater 48:100–109CrossRef
25.
Zurück zum Zitat Liu W, Zhou R, Zhou D, Ding G, Soah JM, Yue CY, Lu X (2015) Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites. Carbon 83:188–197CrossRef Liu W, Zhou R, Zhou D, Ding G, Soah JM, Yue CY, Lu X (2015) Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites. Carbon 83:188–197CrossRef
26.
Zurück zum Zitat Hou C, Duan Y, Zhang Q, Wang H, Li Y (2012) Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. J Mater Chem 22:14991–14996CrossRef Hou C, Duan Y, Zhang Q, Wang H, Li Y (2012) Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. J Mater Chem 22:14991–14996CrossRef
27.
Zurück zum Zitat Tavsanli B, Can V, Okay O (2015) Mechanically strong triple network hydrogels based on hyaluronan and poly(N,N-dimethylacrylamide). Soft Matter 11:8517–8524CrossRef Tavsanli B, Can V, Okay O (2015) Mechanically strong triple network hydrogels based on hyaluronan and poly(N,N-dimethylacrylamide). Soft Matter 11:8517–8524CrossRef
28.
Zurück zum Zitat Moghanjoughi AA, Khoshnevis D, Zarrabi A (2016) A concise review on smart polymers for controlled drug release. Drug Deliv Transl Res 6:333–340CrossRef Moghanjoughi AA, Khoshnevis D, Zarrabi A (2016) A concise review on smart polymers for controlled drug release. Drug Deliv Transl Res 6:333–340CrossRef
29.
Zurück zum Zitat Zhao P, Xu J, Zhang Y, Zhu W, Cui Y (2018) Polymerizable-group capped ZnS nanoparticle for high refractive index inorganic-organic hydrogel contact lens. Mater Sci Eng C Mater Biol Appl 90:485–493CrossRef Zhao P, Xu J, Zhang Y, Zhu W, Cui Y (2018) Polymerizable-group capped ZnS nanoparticle for high refractive index inorganic-organic hydrogel contact lens. Mater Sci Eng C Mater Biol Appl 90:485–493CrossRef
30.
Zurück zum Zitat Algi MP, Okay O (2014) Highly stretchable self-healing poly(N,N-dimethylacrylamide) hydrogels. Eur Polym J 59:113–121CrossRef Algi MP, Okay O (2014) Highly stretchable self-healing poly(N,N-dimethylacrylamide) hydrogels. Eur Polym J 59:113–121CrossRef
31.
Zurück zum Zitat Pandey VS, Verma SK, Yadav M, Behari K (2014) Guar gum-g-N,N′-dimethylacrylamide: synthesis, characterization and applications. Carbohydr Polym 99:284–290CrossRef Pandey VS, Verma SK, Yadav M, Behari K (2014) Guar gum-g-N,N′-dimethylacrylamide: synthesis, characterization and applications. Carbohydr Polym 99:284–290CrossRef
32.
Zurück zum Zitat Chen HY, Hayashi T, Koenig M, Lai JJ (2019) Polymer surface chemistry: biomolecular engineering and biointerfaces. Front Chem 7:271–274CrossRef Chen HY, Hayashi T, Koenig M, Lai JJ (2019) Polymer surface chemistry: biomolecular engineering and biointerfaces. Front Chem 7:271–274CrossRef
33.
Zurück zum Zitat Homaeigohar S, Dai T, Elbahri M (2013) Biofunctionalized nanofibrous membranes as super separators of protein and enzyme from water. J Colloid Interface Sci 406:86–93CrossRef Homaeigohar S, Dai T, Elbahri M (2013) Biofunctionalized nanofibrous membranes as super separators of protein and enzyme from water. J Colloid Interface Sci 406:86–93CrossRef
34.
Zurück zum Zitat Zhao F, Zhang G, Zhao S, Cui J, Gao A, Yan Y (2018) Fabrication of pristine graphene-based conductive polystyrene composites towards high performance and light-weight. Compos Sci Technol 159:232–239CrossRef Zhao F, Zhang G, Zhao S, Cui J, Gao A, Yan Y (2018) Fabrication of pristine graphene-based conductive polystyrene composites towards high performance and light-weight. Compos Sci Technol 159:232–239CrossRef
35.
Zurück zum Zitat Bekiari V, Lianos P (2006) Photophysical behavior of terpyridine-lanthanide ion complexes incorporated in a poly(N,N-dimethylacrylamide) hydrogel. Langmuir 22:8602–8606CrossRef Bekiari V, Lianos P (2006) Photophysical behavior of terpyridine-lanthanide ion complexes incorporated in a poly(N,N-dimethylacrylamide) hydrogel. Langmuir 22:8602–8606CrossRef
36.
Zurück zum Zitat Guillaumont L, Bokias G, Iliopoulos I (2000) Hydrophobically modified poly(N,N-dimethylacryl-amide): Synthesis, aqueous solution behaviour, and rheological properties in aqueous mixtures with hydrophobically modified poly(sodium acrylate). Macromol Chem Phys 20:251–260CrossRef Guillaumont L, Bokias G, Iliopoulos I (2000) Hydrophobically modified poly(N,N-dimethylacryl-amide): Synthesis, aqueous solution behaviour, and rheological properties in aqueous mixtures with hydrophobically modified poly(sodium acrylate). Macromol Chem Phys 20:251–260CrossRef
37.
Zurück zum Zitat Song G, Zhang L, He C, Fang DC, Whitten PG, Wang H (2013) Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 46:7423–7435CrossRef Song G, Zhang L, He C, Fang DC, Whitten PG, Wang H (2013) Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 46:7423–7435CrossRef
38.
Zurück zum Zitat Pontefisso A, Mishnaevsky L (2016) Nanomorphology of graphene and CNT reinforced polymer and its effect on damage: micromechanical numerical study. Compos Part B Eng 96:338–349CrossRef Pontefisso A, Mishnaevsky L (2016) Nanomorphology of graphene and CNT reinforced polymer and its effect on damage: micromechanical numerical study. Compos Part B Eng 96:338–349CrossRef
Metadaten
Titel
The interaction between N,N-dimethylacrylamide and pristine graphene and its role in fabricating a strong nanocomposite hydrogel
verfasst von
Ailin Gao
Shuju Chen
Shuai Zhao
Guangfa Zhang
Jian Cui
Yehai Yan
Publikationsdatum
19.03.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04542-5

Weitere Artikel der Ausgabe 18/2020

Journal of Materials Science 18/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.