Skip to main content

2015 | OriginalPaper | Buchkapitel

7. The Internal Consistency of Arithmetic with Infinite Descent: A Syntactical Proof

verfasst von : Yvon Gauthier

Erschienen in: Towards an Arithmetical Logic

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The question of the consistency or non-contradiction of arithmetic is a philosophical question, that is the certainty of a mathematical theory and it has become a logical problem requiring a mathematical solution. It is Hilbert who has put the original question and who has attempted a first answer. Having demonstrated in 1899 the consistency of elementary geometry on the basis of a consistent arithmetic of real numbers, he turned to the question of that arithmetic (the second problem of his 1900 list) which included besides the axiom of elementary arithmetic an axiom of continuity, i.e. the Archimedean axiom with syntactic completeness. Hilbert introduces functionals, that is second-order functions or functions of functions, in order the use induction over the ordinals. Transfinite induction proved successful in the hands of Gentzen, and thereafter Gödel’s second incompleteness results which aimed to show that Peano’s arithmetic cannot contain its own consistency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
A first version of the proof was published in Modern Logic, VIII (1/2), 47–87 (2000) and contained some extraneous semantical and set-theoretical elements which have been removed here. See also Chapter 4 of my book Internal Logic. Foundations of Mathematics from Kronecker to Hilbert, Kluwer, Dordecht, 2002.
 
2
Kronecker had proven the unique factorization theorem in the following formulation: “Every integral form ( = polynomial) is representable as a product of irreducible (prime) forms in a unique way” (see Kronecker 1882, p. 352). Kronecker is interested in the theory of divisibility for prime forms (forms with no common divisors greater than 1), rather than prime polynomials in his work. The notion of integral domain and unique factorization domain are direct descendants to that theorem.
 
3
This can be seen as the precursor of the problem of quantification over empty domains. We know that we have
$$\displaystyle{\frac{A,A \supset B} {B} }$$
in an empty domain, provided that A and B have the same free variables. But Kronecker had a more general theory of inclusion or content of forms in mind and the transformation in question is a composition of contents, an internal constitution of polynomials (forms) where indeterminates are not the usual functional variables.
 
4
Mordell says of infinite descent in 1922 that you start with an arbitrary n—an arbitrary choice made once and for all—and descend finitely. Hasse’s principle of local solvability implying global solvability for quadratic forms relies on the same principle and is related to Legendre “positive” infinite descent (see Davenport 1968).
 
5
My emphasis is different from Edwards (1987a,b) who has chosen to look at divisor theory rather than the theory of forms which is, in my view, the encompassing theory.
 
6
See Kronecker (1889). Edwards (1987a,b) rightly says that Dedekind’s Prague theorem—a generalization of Gauss lemma to the algebraic case—is but a consequence of Kronecker’s result. See also Edwards et al. (1982).
 
7
One may notice in that context that Kohlenbach with collaborators has adopted the Dialectica interpretation for Kreisel’s proof mining project instead of Kreisel’s own no-counter-example interpretation. This turn in logic is somewhat ironical when one remembers that Kreisel downgraded the Dialectica Interpretation in his Gödel obituary in the Bibliographical Memoirs of the Royal Society 26, 1980.
 
8
The analogy is misleading though, since the algebrization of logic from Boole for the sentential calculus to Tarski (cylindrical algebra) and Halmos (polyadic algebra) for the predicate calculus does not have the generality or the extent of the polynomial calculus which is, as Kronecker has emphasized, a general arithmetic with purely arithmetical content. In contrast then to the algebra of logic, the polynomial calculus of the theory of forms pertains to the arithmetization of logic. Categorical logic as an algebraic logic does not fare better since it does only translate isomorphically logical calculi into categorical structures (from Lawvere’s elementary topos to closed cartesian categories or monoidal categories) only reflecting the surface features of deductive systems.
 
Literatur
Zurück zum Zitat E. Bishop (1967): Foundations of Constructive Analysis. New York, McGraw-Hill.MATH E. Bishop (1967): Foundations of Constructive Analysis. New York, McGraw-Hill.MATH
Zurück zum Zitat A. Davenport (1968): The Higher Arithmetic. Chap. VI. Hutchinson University Library, London. A. Davenport (1968): The Higher Arithmetic. Chap. VI. Hutchinson University Library, London.
Zurück zum Zitat H. M. Edwards (1987a): Divisor Theory. Birkhaüser, Basel. H. M. Edwards (1987a): Divisor Theory. Birkhaüser, Basel.
Zurück zum Zitat H. M. Edwards, O. Neumann and W. Purkert (1982): Dedekinds “Bunte Bemerkungen” zu Kroneckers “Grundzüge”. Archive for History of Exact Sciences, 27(1):49–85.MATHMathSciNet H. M. Edwards, O. Neumann and W. Purkert (1982): Dedekinds “Bunte Bemerkungen” zu Kroneckers “Grundzüge”. Archive for History of Exact Sciences, 27(1):49–85.MATHMathSciNet
Zurück zum Zitat Y. Gauthier (2013a): Kronecker in Contempory Mathematics. General Arithmetic as a Foundational Programme. Reports on Mathematical Logic, 48:37–65. Y. Gauthier (2013a): Kronecker in Contempory Mathematics. General Arithmetic as a Foundational Programme. Reports on Mathematical Logic, 48:37–65.
Zurück zum Zitat K. Gödel (1990): Collected Works. S. Feferman, ed., volume II, 217–251. Oxford University Press, New York/Oxford. K. Gödel (1990): Collected Works. S. Feferman, ed., volume II, 217–251. Oxford University Press, New York/Oxford.
Zurück zum Zitat J. Herbrand (1968): Écrits logiques. J. van Heijenoort, ed. PUF, Paris. J. Herbrand (1968): Écrits logiques. J. van Heijenoort, ed. PUF, Paris.
Zurück zum Zitat D. Hilbert (1904): Über die Grundlagen der Logik und Mathematik, 174–185. in: A. Krazer (Hrsg.) Verhandlungen des III. Internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13. August 1904. Leipzig, Teubner. D. Hilbert (1904): Über die Grundlagen der Logik und Mathematik, 174–185. in: A. Krazer (Hrsg.) Verhandlungen des III. Internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13. August 1904. Leipzig, Teubner.
Zurück zum Zitat D. Hilbert (1926): Über das Unendliche. Mathematische Annalen, 95: 161–190. trad. par A. Weil sous le titre “Sur l’infini”, Acta Mathematica 48: 91–122. D. Hilbert (1926): Über das Unendliche. Mathematische Annalen, 95: 161–190. trad. par A. Weil sous le titre “Sur l’infini”, Acta Mathematica 48: 91–122.
Zurück zum Zitat D. Hilbert and P. Bernays (1968–1970): Grundlagen der Mathematik I et II. Springer, Berlin, 2 édition. D. Hilbert and P. Bernays (1968–1970): Grundlagen der Mathematik I et II. Springer, Berlin, 2 édition.
Zurück zum Zitat K. Ireland and M. Rosen (1980): A Classical Introduction to Modern Number Theory. Springer, New York/Heidelberg/Berlin. K. Ireland and M. Rosen (1980): A Classical Introduction to Modern Number Theory. Springer, New York/Heidelberg/Berlin.
Zurück zum Zitat U. Kohlenbach (1998): Arithmetising Proofs in Analysis. In Lascar D. Larrazabal, J.M. and G. Mints, editors. Logig Colloquium 96, volume 12 of Springer Lecture Notes in Logic. U. Kohlenbach (1998): Arithmetising Proofs in Analysis. In Lascar D. Larrazabal, J.M. and G. Mints, editors. Logig Colloquium 96, volume 12 of Springer Lecture Notes in Logic.
Zurück zum Zitat G. Kreisel (1961): Set-theoretic problems suggested by the notion of potential totality, 103–140. in: Infinitistic Methods. Pergamon Press, Oxford. G. Kreisel (1961): Set-theoretic problems suggested by the notion of potential totality, 103–140. in: Infinitistic Methods. Pergamon Press, Oxford.
Zurück zum Zitat L. Kronecker (1889): Grundzüge einer arithmetischen Theorie der algebraischen Grössen. Werke, II:47–208. L. Kronecker (1889): Grundzüge einer arithmetischen Theorie der algebraischen Grössen. Werke, II:47–208.
Zurück zum Zitat L. Kronecker (1968a): Über Systeme von Funktionen mehrerer Variablen. In K. Hensel, editor, Werke, volume I. Teubner, Leipzig. L. Kronecker (1968a): Über Systeme von Funktionen mehrerer Variablen. In K. Hensel, editor, Werke, volume I. Teubner, Leipzig.
Zurück zum Zitat L. Kronecker (1968b): Werke, éd. K. Hensel, volume III, Grundzüge einer arithmetischen Theorie der algebraischen Grössen, 245–387. Teubner, Leipzig. L. Kronecker (1968b): Werke, éd. K. Hensel, volume III, Grundzüge einer arithmetischen Theorie der algebraischen Grössen, 245–387. Teubner, Leipzig.
Zurück zum Zitat E. Nelson (1987a): Predicative Arithmetic. Number 32 of Mathematical Notes. Princeton University Press, Princeton, N.J. E. Nelson (1987a): Predicative Arithmetic. Number 32 of Mathematical Notes. Princeton University Press, Princeton, N.J.
Zurück zum Zitat E. Nelson (1987b): A Radically Elementary Probability Theory. Princeton University Press, Princeton, N. J. E. Nelson (1987b): A Radically Elementary Probability Theory. Princeton University Press, Princeton, N. J.
Zurück zum Zitat B. A. Trakhtenbrot (1950): Nevozmozhnosty Algorifma dla Problemy Razreximosti Konechnyh Klassah, (The impossibility of an algorithm for the decision problem in finite classes). Dokl. Akad. Nauk, SSSR, 70:569–572. B. A. Trakhtenbrot (1950): Nevozmozhnosty Algorifma dla Problemy Razreximosti Konechnyh Klassah, (The impossibility of an algorithm for the decision problem in finite classes). Dokl. Akad. Nauk, SSSR, 70:569–572.
Zurück zum Zitat H. S. Vandiver (1936): Constructive Derivation of the Decomposition Field of a Polynomial. Annals of Mathematics, 37(1):1–6.MathSciNetCrossRef H. S. Vandiver (1936): Constructive Derivation of the Decomposition Field of a Polynomial. Annals of Mathematics, 37(1):1–6.MathSciNetCrossRef
Zurück zum Zitat A. Weil (1979a): Oeuvres scientifiques. Collected Paper, Vol. I, Springer-Verlag, New York. A. Weil (1979a): Oeuvres scientifiques. Collected Paper, Vol. I, Springer-Verlag, New York.
Metadaten
Titel
The Internal Consistency of Arithmetic with Infinite Descent: A Syntactical Proof
verfasst von
Yvon Gauthier
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-22087-1_7