Skip to main content
main-content

Über dieses Buch

The main objective of this book is to provide a multidisciplinary overview of methodological approaches, architectures, platforms, and algorithms for the realization of an Internet of Things (IoT)-based Smart Urban Ecosystem (SUE). Moreover, the book details a set of real-world applications and case studies related to specific smart infrastructures and smart cities, including structural health monitoring, smart urban drainage networks, smart grids, power efficiency, healthcare, city security, and emergency management.

A Smart Urban Ecosystem (SUE) is a people-centric system of systems that involves smart city environments, applications, and infrastructures. SUEs require the close integration of cyber and physical components for monitoring, understanding and controlling the urban environment. In this context, the Internet of Things (IoT) offers a valuable enabling technology, as it bridges the gap between physical things and software components, and empowers cooperation between distributed, pervasive, and heterogeneous entities.

Inhaltsverzeichnis

Frontmatter

A Social and Pervasive IoT Platform for Developing Smart Environments

Abstract
Nowadays, the increasing in the use of Internet of Things (IoT) devices is growing the realization of pervasive Smart Environments (SEs) and Smart Urban Ecosystems, where all the data gathered by the “Things” can be elaborated and used to improve the livability, the safety and the security of the environment, and to make inhabitants lives easier. Many efforts have been already done in the direction of SEs development and in the implementation of platforms specifically designed for SE realization. Anyway, such efforts miss of solutions regarding the interoperability among the realized SEs and other third-part “Things”. This chapter gives an overview of iSapiens, which is a Java-based platform specifically designed for the development and implementation of SEs. iSapiens tries to overcome the interoperability issue by leveraging the Social Internet of Things (SIoT) paradigm that allows to dynamically include in an SE the new “Things” that can appear in an environment without requiring interventions from humans. iSapiens provides tools for the realization of pervasive SEs and relies on the edge computing paradigm. Such paradigm is extremely important in a distributed system since it allows to use distributed storage and computation at the edge of a network, so reducing latencies with respect to move all the executions and storages in the cloud. Moreover, the chapter will review some SE applications realized by exploiting iSapiens concepts.
Orazio Briante, Franco Cicirelli, Antonio Guerrieri, Antonio Iera, Alessandro Mercuri, Giuseppe Ruggeri, Giandomenico Spezzano, Andrea Vinci

Smart City Platform Specification: A Modular Approach to Achieve Interoperability in Smart Cities

Abstract
The development of our cities towards the Smart City paradigm is one of the challenges facing today’s society. This means, among other things, continuously developing and adopting ICT technologies in order to create platforms on which governments, businesses and citizens can communicate and work together and providing the necessary connections between the networks (of people, businesses, technologies, infrastructures, energy and spaces) that are the base for the services of the city. The incredible vastness and diversity of applications that are emerging in this context generates an enormous amount of data of different types and from heterogeneous sources to be shared and exchanged. In this article we propose an approach and describe a methodology and a modular and scalable multi-layered ICT platform to address the problem of cross-domain interoperability in the context of Smart City applications.
Arianna Brutti, Piero De Sabbata, Angelo Frascella, Nicola Gessa, Raffaele Ianniello, Cristiano Novelli, Stefano Pizzuti, Giovanni Ponti

Integrated Cyber Physical Assessment and Response for Improved Resiliency

Abstract
Cyber-physical systems (CPS) are control systems that facilitate the integration of physical systems and computer-based algorithms. These systems are commonly used in control system and critical infrastructure for control and monitoring applications. The internet-of-things (IoT) is a subset of CPS in which multiple physical embedded devices and sensors are connected via a distributed network to communicate and transfer data while being driven by computational algorithms for data delivery and decision-making tasks.
P. Sivils, C. Rieger, K. Amarasinghe, M. Manic

On the Integration of Information Centric Networking and Fog Computing for Smart Home Services

Abstract
Research on monitoring and control services for smart home and building management is expanding, stimulated by the growing interest in Cloud computing and Internet of Things. In addition to proprietary platforms, a common trend is to connect the smart home network to the Internet and leverage Cloud resources to run the application logic and store historical information. Recently, in many designs, intelligence is introduced at the edge of the home network to support low complexity operations. Interoperability between the different network domains is offered by the TCP/IP protocol suite and its extension for low-power nodes, i.e., 6LoWPAN. In parallel, the revolutionary Information Centric Networking (ICN) paradigm has been recently proposed to support future Internet communications and also data delivery in smart urban ecosystems, including smart home/building services. By leveraging name-based communication, in-network caching and per-packet security, ICN can largely simplify data delivery and service provisioning in instrumented environments. Moreover, by integrating ICN with Cloud technologies, a comprehensive home management system can be built. In this chapter, solutions are presented that rely on ICN for monitoring and controlling the smart environment. The integration of ICN with Cloud/Fog resources is also discussed and a reference architecture is presented as proof-of-concept, together with a preliminary testbed.
Marica Amadeo, Andrea Giordano, Carlo Mastroianni, Antonella Molinaro

Optimal Placement of Security Resources for the Internet of Things

Abstract
In many Internet of Thing application domains security is a critical requirement, because malicious parties can undermine the effectiveness of IoT-based systems by compromising single components and/or communication channels. Thus, a security infrastructure is needed to ensure the proper functioning of such systems even under attack. However, it is also critical that security be at a reasonable resource and/or energy cost. This chapter deals with the problem of efficiently and effectively securing IoT networks by carefully allocating security resources in the network area. The problem is modeled according to game theory, and provide a Pareto-optimal solution, in which the cost of the security infrastructure and the probability of a successful attack are minimized. As in the context of smart urban ecosystems both static and mobile smart city applications can take place, two different formalizations are provided for the two scenarios. For static networks, the optimization problem is modeled as a mixed integer linear program, whereas for mobile scenarios, computational intelligent techniques are adopted for providing a good approximation of the optimal solution.
Antonino Rullo, Edoardo Serra, Elisa Bertino, Jorge Lobo

Embedding Internet-of-Things in Large-Scale Socio-technical Systems: A Community-Oriented Design in Future Smart Grids

Abstract
In traditional engineering, technologies are viewed as the core of the engineering design, in a physical world with a large number of diverse technological artefacts. The real world, however, also includes a huge number of social components—people, communities, institutions, regulations and everything that exists in the human mind—that have shaped and been shaped by the technological components. Smart urban ecosystems are examples of large-scale Socio-Technical Systems (STS) that rely on technologies, in particular on the Internet-of-Things (IoT), within a complex social context where the technologies are embedded. Designing applications that embed both social complexity and IoT in large-scale STS requires a Socio-Technical (ST) approach, which has not yet entered the mainstream of design practice. This chapter reviews the literature and presents our experience of adopting an ST approach to the design of a community-oriented smart grid application. It discusses the challenges, process and outcomes of this apporach, and provides a set of lessons learned derived from this experience that are also deemed relevant to the design of other smart urban ecosystems.
Yilin Huang, Giacomo Poderi, Sanja Šćepanović, Hanna Hasselqvist, Martijn Warnier, Frances Brazier

Aggregation Techniques for the Internet of Things: An Overview

Abstract
Internet of Thing (IoT) can be generally defined as a network connecting millions of smart objects, most of them equipped with sensors. Since sensors are devices generating a huge amount of data, the transmission of raw data to the edge nodes and then to higher level cloud nodes may give rise to transmission delays and energy consumption. Furthermore, sensors are characterized by limited resources. For all these reasons, aggregation techniques are required to reduce the size of data to be transmitted and stored, while maintaining a reasonable level of approximation. In this paper, we propose an overview of a set of aggregation techniques which may be exploited in IoT. We present a set of techniques, ranging from Space Filling Curves, to Q-digest, Wavelets, Gossip aggregation, and Compressive Sensing. We also show how these techniques are exploited in IoT applications.
Barbara Guidi, Laura Ricci

Swarm Intelligence and IoT-Based Smart Cities: A Review

Abstract
Smart cities are complex and large distributed systems characterized by their heterogeneity, security, and reliability challenges. In addition, they are required to take into account several scalability, efficiency, safety, real-time responses, and smartness issues. All of this means that building smart city applications is extremely complex. Swarm Intelligence is a very promising paradigm to deal with such complex and dynamic systems. It presents robust, scalable and self-organized behaviors to deal with dynamic and fast changing systems. The intelligence of cities can be modeled as a swarm of digital telecommunication networks (the nerves), ubiquitously embedded intelligence (the brains), sensors and tags (the sensory organs), and software (the knowledge and cognitive competence). In this chapter, swarm intelligence-based algorithms and existing swarm intelligence-based smart city solutions will be analyzed. Moreover, a swarm-based framework for smart cities will be presented. Then, a set of trends on how to use swarm intelligence in smart cities, in order to make them flexible and scalable, will be investigated.
Ouarda Zedadra, Antonio Guerrieri, Nicolas Jouandeau, Giandomenico Spezzano, Hamid Seridi, Giancarlo Fortino

Cost Saving and Ancillary Service Provisioning in Green Mobile Networks

Abstract
Mobile Network Operators (MNOs) are facing huge operational costs, due to the staggering increase of mobile traffic and to substantial bandwidth reliability requirements needed to enable the services of Smart Urban Ecosystems. With the purpose of reducing the cost due to power supply, dynamic load adaptation techniques are often implemented in Mobile Networks, in order to save energy when the traffic demand is low. Moreover, renewable energy (RE) sources are commonly introduced to power base stations, further contributing to decrease the operational expenditures. Finally, in a Demand Response context, the Smart Grid (SG) may actively ask its customers to dynamically adapt their consumption, by means of monetary incentives. The MNO is interested in improving the interaction with the SG, since mutual benefits can be obtained: cost reduction for the MNO and ancillary service provisioning from the SG side. We investigate via simulation a mobile access network where WiFi offloading techniques are combined with a properly designed energy management strategy, in order to reduce the load and better satisfy the SG requests. The impact of WiFi offloading is analyzed in different scenarios, including those envisioning the use of RE to power base stations (BSs) and/or the application of Resource on Demand (RoD) strategies, that activate or deactivate BSs based on traffic demand. Real data about traffic, RE production and SG requests are adopted. WiFi offloading results effective both in improving the probability of providing ancillary services and in reducing operational costs in any scenario, even when no RE is available. Furthermore, its impact is even more significant than the application of RoD strategies. Positive revenues are also possible for the MNO when RE are used, even when photovoltaic panels with relatively small capacity are installed.
Muhammad Ali, Michela Meo, Daniela Renga

Structural Health Monitoring (SHM)

Abstract
This work tries to fit structural health monitoring into the Internet of Things (IoT), the main topic of the research carried out in the context of the PON-DOMUS project [1]. The structural analysis has always used electrical and electronic methods for defining the deformation state of a structure. Examples are the displacement transducers, the strain gauges, the accelerometers. Here we have tried to coordinate and to connect the activities and the information of these sensors through the controls and the information transfer that allow the capabilities of IoT. The problems faced and solved by the other groups operating in the research project have also been transferred to the structural engineering part, thus allowing an on-line and real-time assessment of the structural health of the building and, therefore, an interaction with the subjects in charge maintenance or for the facilitation of the emergency management phases [2, 3].
Raffaele Zinno, Serena Artese, Gabriele Clausi, Floriana Magarò, Sebastiano Meduri, Angela Miceli, Assunta Venneri

A Smart Air-Conditioning Plant for Efficient Energy Buildings

Abstract
The spread of renewable energy technologies in the building sector has produced the new figure of “prosumer”, able to consume and produce energy simultaneously. In this context, a correct management of the energy fluxes is required to increase user remuneration. All of this, paired with the use of the emergent IoT technologies, allowed the realization of a Smart Ecosystem devoted to make effective the process of producing, storing and consuming energy. Considering PV generators, the self-produced electricity surplus has to be transferred with advantageous conditions, alternatively it has to be stored. Air-conditioning plants employing heat pumps represent a useful option for the rational management of renewable electricity because the same system can be used as an alternative to “electric storage”, cheaper and more reliable than traditional batteries. Heat pumps can be exploited to produce thermal or cooling energy and store it in a suitable tank, though the building does not require them, and to conciliate the time shift between energy demand and offer. In presence of a saturated storage tank, the same building could be used as a further thermal accumulator by exploiting radiant emission systems to activate its thermal mass, by means of either overheating or undercooling strategies. The combination of these solutions allows for noticeable energy and economic savings and a rational use of renewable sources. However, a smart control system is required to make all the various involved devices communicating and coordinating among each other. A smart air conditioning system and the correspondent control strategies adopted for its management, based on the employment of PV driven heat pumps with thermal storage connected to a radiant emission system, is introduced.
Roberto Bruno, Natale Arcuri, Giorgio Cuconati

A Comprehensive Approach to Stormwater Management Problems in the Next Generation Drainage Networks

Abstract
In an urban environment, sewer flooding and combined sewer overflows (CSOs) are a potential risk to human life, economic assets and the environment. In this way, traditional urban drainage techniques seem to be inadequate for the purpose so to mitigate such phenomena, new techniques such as Real Time Control (RTC) of urban drainage systems and Low Impact Development (LID) techniques represent a valid and cost-effective solution. This chapter lists some of the recent experiences in the field of Urban Hydrology consisting in a series of facilities, fully equipped with sensors and other electronical component, to prevent flooding in urban areas. A series of innovative numerical analysis (in Urban Hydrology research) have been proposed to define properties of the hydrological/hydraulic models used to reproduce the natural processes involved.
Patrizia Piro, Michele Turco, Stefania Anna Palermo, Francesca Principato, Giuseppe Brunetti

Cooperative Video-Surveillance Framework in Internet of Things (IoT) Domain

Abstract
In this chapter a cooperative heterogeneous system for an enhanced video-surveillance service will be presented. Edge and fog computing architectures make possible the realization of even more complex and distributed services. Moreover, the distribution of sensors and devices gives us the possibility to increase the knowledge of the monitored environments by exploiting Machine to Machine (M2M) communications protocols and their architectures. The rapid growth of IoT increased the number of the smart devices able to acquire, actuate and exchange information in a smart way. In this chapter, the main issues related to the design of an architecture for a smart cooperative video-surveillance system will be presented. The end-system shall exploit edge and fog computing for video-analytics services and communication protocols for cameras data exchange. Finally, all systems together realize a cooperative tracking among cameras that involves detection and tracking techniques to work jointly. At the end a detected anomaly can be followed among cameras generating alerting and notifying messages that will be sent to the designed human interaction system without explicit human interactions in the detection, tracking and system managing processes.
A. F. Santamaria, P. Raimondo, N. Palmieri, M. Tropea, F. De Rango

Personal Connected Devices for Healthcare

Abstract
Personal connected health technologies are fast becoming integral in a person’s daily life to help improve their health and wellbeing. Aside from the ubiquitous personal fitness devices applications, there are numerous monitoring devices for personal healthcare, along with more proactive devices that enable users to engage in self-therapeutic techniques in order to improve their overall wellbeing. In this chapter, we provide a broad overview for a range of devices that allow people to monitor their own health and also those that provide self-therapeutic benefits using biofeedback or neurofeedback to learn to control their own physiologic functions. We discuss such devices within the context of the access to data and provide a taxonomy that covers the software for data integration, the type of connectivity and user interfaces for data collection, API authentication and authorization, and data access policies and formats.
Adina Riposan-Taylor, Ian J. Taylor

Evacuation and Smart Exit Sign System

Abstract
Smart systems based on the Internet of things are being successfully applied in multiple sectors. In this work, the application of the Internet of things to emergency evacuation systems will be tackled. Fixed direction signs represent the current practice in identifying evacuation paths, but they can be misleading or lead evacuees to unsafe areas. Smart evacuation systems can overcome all these issues and allow the shortest and safest path to be determined based on the real time data gathered from sensors. A description of the proposed algorithm is presented. The communication between the different devices and exchange of information are of crucial importance in real-time operations. A reliable evacuation algorithm has to consider if an escape route is no longer usable and promptly provide an alternative path. The evacuees are guided by “smart exit signs” which can change their direction dynamically. Simultaneously, more precise and accurate data is available for the rescuers to ensure a more effective intervention.
V. Ferraro, J. Settino
Weitere Informationen