Skip to main content
Erschienen in: Designs, Codes and Cryptography 3/2015

01.06.2015

The largest Erdős–Ko–Rado sets in \(2-(v,k,1)\) designs

verfasst von: Maarten De Boeck

Erschienen in: Designs, Codes and Cryptography | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An Erdős–Ko–Rado set in a block design is a set of pairwise intersecting blocks. In this article we study Erdős–Ko–Rado sets in \(2\,-\,(v,k,1)\) designs, Steiner systems. The Steiner triple systems and other special classes are treated separately. For \(k\ge 4\), we prove that the largest Erdős–Ko–Rado sets cannot be larger than a point-pencil if \(r\ge k^{2}-3k+\frac{3}{4}\sqrt{k}+2\) and that the largest Erdős–Ko–Rado sets are point-pencils if also \(r\ne k^{2}-k+1\) and \((r,k)\ne (8,4)\). For unitals we also determine an upper bound on the size of the second-largest maximal Erdős–Ko–Rado sets.
Literatur
1.
Zurück zum Zitat Assmus E.F., Key J.D.: Designs and Their Codes. Cambridge Tracts in Mathematics, vol. 103. Cambridge University Press, Cambridge (1992). Assmus E.F., Key J.D.: Designs and Their Codes. Cambridge Tracts in Mathematics, vol. 103. Cambridge University Press, Cambridge (1992).
2.
Zurück zum Zitat Blokhuis A., Brouwer A.E., Chowdhury A., Frankl P., Patkos B., Mussche T., Szőnyi T.: A Hilton–Milner theorem for vector spaces. Electron. J. Comb. 17(1), R71 (2010). Blokhuis A., Brouwer A.E., Chowdhury A., Frankl P., Patkos B., Mussche T., Szőnyi T.: A Hilton–Milner theorem for vector spaces. Electron. J. Comb. 17(1), R71 (2010).
3.
Zurück zum Zitat Blokhuis A., Brouwer A.E., Szőnyi T., Weiner Z.: On \(q\)-analogues and stability theorems. J. Geom. 101(1–2), 31–50 (2011). Blokhuis A., Brouwer A.E., Szőnyi T., Weiner Z.: On \(q\)-analogues and stability theorems. J. Geom. 101(1–2), 31–50 (2011).
4.
Zurück zum Zitat Blokhuis A., Brouwer A.E., Szőnyi T.: On the chromatic number of \(q\)-Kneser graphs. Des. Codes Cryptogr. 65(3), 187–197 (2012). Blokhuis A., Brouwer A.E., Szőnyi T.: On the chromatic number of \(q\)-Kneser graphs. Des. Codes Cryptogr. 65(3), 187–197 (2012).
5.
Zurück zum Zitat Brouwer A.E.: Some unitals on 28 points and their embeddings in projective planes of order 9. In: Geometries and Groups (Berlin, 1981). Lecture Notes in Mathematics, vol. 893, pp. 183–188. Springer, Berlin (1981). Brouwer A.E.: Some unitals on 28 points and their embeddings in projective planes of order 9. In: Geometries and Groups (Berlin, 1981). Lecture Notes in Mathematics, vol. 893, pp. 183–188. Springer, Berlin (1981).
6.
Zurück zum Zitat Cameron P.J., van Lint J.H.: Designs, Graphs, Codes and Their Links. London Mathematical Society Student Texts, vol. 22. Cambridge University Press, Cambridge (1991). Cameron P.J., van Lint J.H.: Designs, Graphs, Codes and Their Links. London Mathematical Society Student Texts, vol. 22. Cambridge University Press, Cambridge (1991).
7.
Zurück zum Zitat Colbourn C.J., Dinitz J.H.: Handbook of Combinatorial Designs. Discrete Mathematics and Its Applications, vol. 42. Chapman & Hall/Taylor & Francis, Boca Raton (2006). Colbourn C.J., Dinitz J.H.: Handbook of Combinatorial Designs. Discrete Mathematics and Its Applications, vol. 42. Chapman & Hall/Taylor & Francis, Boca Raton (2006).
8.
Zurück zum Zitat De Boeck M.: The largest Erdős–Ko–Rado sets of planes in finite projective and finite classical polar spaces. Des. Codes Cryptogr. (2013). Special issue “Finite Geometries, in honor of F. De Clerck”. doi:10.1007/s10623-013-9812-9. De Boeck M.: The largest Erdős–Ko–Rado sets of planes in finite projective and finite classical polar spaces. Des. Codes Cryptogr. (2013). Special issue “Finite Geometries, in honor of F. De Clerck”. doi:10.​1007/​s10623-013-9812-9.
9.
Zurück zum Zitat De Boeck M., Storme L.: Theorems of Erdős–Ko–Rado type in geometrical settings. Sci. China Math. 56(7), 1333–1348 (2013). De Boeck M., Storme L.: Theorems of Erdős–Ko–Rado type in geometrical settings. Sci. China Math. 56(7), 1333–1348 (2013).
10.
Zurück zum Zitat Dembowski P.: Finite Geometries. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44. Springer, New York (1968). Dembowski P.: Finite Geometries. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44. Springer, New York (1968).
11.
Zurück zum Zitat Erdős P., Ko C., Rado R.: Intersection theorems for systems of finite sets. Quart. J. Math. 12(1), 313–320 (1961). Erdős P., Ko C., Rado R.: Intersection theorems for systems of finite sets. Quart. J. Math. 12(1), 313–320 (1961).
12.
Zurück zum Zitat Hughes D.R., Piper F.C.: Design Theory. Cambridge University Press, Cambridge (1985). Hughes D.R., Piper F.C.: Design Theory. Cambridge University Press, Cambridge (1985).
14.
Zurück zum Zitat Newman M.: Independent sets and eigenspaces. PhD Thesis, University of Waterloo (2004). Newman M.: Independent sets and eigenspaces. PhD Thesis, University of Waterloo (2004).
15.
Zurück zum Zitat O’Nan M.E.: Automorphisms of unitary block designs. J. Algebra 20, 495–511 (1972). O’Nan M.E.: Automorphisms of unitary block designs. J. Algebra 20, 495–511 (1972).
16.
Zurück zum Zitat Pepe V., Storme L., Vanhove F.: Theorems of Erdős–Ko–Rado type in polar spaces. J. Combin. Theory A 118(4), 1291–1312 (2011). Pepe V., Storme L., Vanhove F.: Theorems of Erdős–Ko–Rado type in polar spaces. J. Combin. Theory A 118(4), 1291–1312 (2011).
17.
Zurück zum Zitat Piper F.: Unitary block designs. Graph theory and combinatorics. In: Proceedings Conference, Open University, Milton Keynes, 1978. Research Notes in Mathematics, vol. 34, pp. 98–105. Pitman, Boston (1979). Piper F.: Unitary block designs. Graph theory and combinatorics. In: Proceedings Conference, Open University, Milton Keynes, 1978. Research Notes in Mathematics, vol. 34, pp. 98–105. Pitman, Boston (1979).
18.
Zurück zum Zitat Rands B.M.I.: An extension of the Erdős, Ko, Rado theorem to \(t\)-designs. J. Comb. Theory A 32(3), 391–395 (1982). Rands B.M.I.: An extension of the Erdős, Ko, Rado theorem to \(t\)-designs. J. Comb. Theory A 32(3), 391–395 (1982).
19.
Zurück zum Zitat Tanaka H.: Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs. J. Comb. Theory A 113(5), 903–910 (2006). Tanaka H.: Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs. J. Comb. Theory A 113(5), 903–910 (2006).
20.
Zurück zum Zitat Wilson R.M.: The exact bound in the Erdős–Ko–Rado theorem. Combinatorica 4(2–3), 247–257 (1984). Wilson R.M.: The exact bound in the Erdős–Ko–Rado theorem. Combinatorica 4(2–3), 247–257 (1984).
Metadaten
Titel
The largest Erdős–Ko–Rado sets in designs
verfasst von
Maarten De Boeck
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 3/2015
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-014-9929-5

Weitere Artikel der Ausgabe 3/2015

Designs, Codes and Cryptography 3/2015 Zur Ausgabe