Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.07.2014 | Ausgabe 1/2014

Designs, Codes and Cryptography 1/2014

The largest Erdős-Ko-Rado sets of planes in finite projective and finite classical polar spaces

Zeitschrift:
Designs, Codes and Cryptography > Ausgabe 1/2014
Autor:
Maarten De Boeck
Wichtige Hinweise
This is one of several papers published in Designs, Codes and Cryptography comprising the special topic on “Finite Geometries: A special issue in honor of Frank De Clerck”.

Abstract

Erdős-Ko-Rado sets of planes in a projective or polar space are non-extendable sets of planes such that every two have a non-empty intersection. In this article we classify all Erdős-Ko-Rado sets of planes that generate at least a 6-dimensional space. For general dimension (projective space) or rank (polar space) we give a classification of the ten largest types of Erdős-Ko-Rado sets of planes. For some small cases we find a better, sometimes complete, classification.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2014

Designs, Codes and Cryptography 1/2014 Zur Ausgabe

Premium Partner

    Bildnachweise