Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

29.09.2016 | Original Paper | Ausgabe 3/2017

Journal of Business and Psychology 3/2017

The Latent Change Score Model: A More Flexible Approach to Modeling Time in Self-Regulated Learning

Zeitschrift:
Journal of Business and Psychology > Ausgabe 3/2017
Autoren:
Garett N. Howardson, Michael N. Karim, Ryan G. Horn
Wichtige Hinweise
The authors would like to thank Kevin Murphy and two anonymous reviewers for the helpful direction in revising this manuscript.

Abstract

Purpose

This research advances understanding of empirical time modeling techniques in self-regulated learning research. We intuitively explain several such methods by situating their use in the extant literature. Further, we note key statistical and inferential assumptions of each method while making clear the inferential consequences of inattention to such assumptions.

Design/Methodology/Approach

Using a population model derived from a recent large-scale review of the training and work learning literature, we employ a Monte Carlo simulation fitting six variations of linear mixed models, seven variations of latent common factor models, and a single latent change score model to 1500 simulated datasets.

Findings

The latent change score model outperformed all six of the linear mixed models and all seven of the latent common factor models with respect to (1) estimation precision of the average learner improvement, (2) correctly rejecting a false null hypothesis about such average improvement, and (3) correctly failing to reject true null hypothesis about between-learner differences (i.e., random slopes) in average improvement.

Implications

The latent change score model is a more flexible method of modeling time in self-regulated learning research, particularly for learner processes consistent with twenty-first-century workplaces. Consequently, defaulting to linear mixed or latent common factor modeling methods may have adverse inferential consequences for better understanding self-regulated learning in twenty-first-century work.

Originality/Value

Ours is the first study to critically, rigorously, and empirically evaluate self-regulated learning modeling methods and to provide a more flexible alternative consistent with modern self-regulated learning knowledge.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2017

Journal of Business and Psychology 3/2017 Zur Ausgabe

Premium Partner

    Bildnachweise