2020 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Data Science
The k-2-distance coloring of a graph G is a mapping \(c:V(G)\rightarrow \{1,2,\cdots ,k\}\) such that for every pair of \(u,v\in V(G)\) satisfying \(0<d_{G}(u,v)\le 2\), \(c(u)\ne c(v)\). A graph G is list 2-distance k-colorable if any list L of admissible colors on V(G) of size k allows a 2-distance coloring \(\varphi \) such that \(\varphi (v)\in L(v)\). The least k for which G is list 2-distance k-colorable is denoted by \(\chi _{2}^{l}(G)\). In this paper, we proved that if a graph G with the maximum average degree \(mad(G)<2+\frac{9}{10}\) and \(\bigtriangleup (G)=6\), then \(\chi _{2}^{l}(G)\le 12\); if a graph G with \(mad(G)<2+\frac{4}{5}(\mathrm {resp.} mad(G)<2+\frac{17}{20})\) and \(\bigtriangleup (G)=7\), then \(\chi _{2}^{l}(G)\le 11(\mathrm {resp.} \chi _{2}^{l}(G)\le 12)\).
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North-Holland, New York (1976) CrossRef Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North-Holland, New York (1976)
CrossRef
2.
Zurück zum Zitat Cranston, D.W., Škrekovski, R.: Sufficient sparseness conditions for \(G^{2}\) to be \((\varDelta +1)\)-choosable, when \(\varDelta \ge 5\). Discrete Appl. Math. 162(10), 167–176 (2014) MathSciNetCrossRef Cranston, D.W., Škrekovski, R.: Sufficient sparseness conditions for
\(G^{2}\) to be
\((\varDelta +1)\)-choosable, when
\(\varDelta \ge 5\). Discrete Appl. Math.
162(10), 167–176 (2014)
MathSciNetCrossRef
3.
Zurück zum Zitat Cranston, D.W., Erman, R., Skrekovski, R.: Choosability of the square of a planar graph with maximum degree four. Australas. J. Combin. 59(1), 86–97 (2014) MathSciNetMATH Cranston, D.W., Erman, R., Skrekovski, R.: Choosability of the square of a planar graph with maximum degree four. Australas. J. Combin.
59(1), 86–97 (2014)
MathSciNetMATH
4.
Zurück zum Zitat Molloy, M., Salavatipour, M.R.: A bound on the chromatic number of the square of a planar graph. J. Combin. Theory Ser. B 94(2), 189–213 (2005) MathSciNetCrossRef Molloy, M., Salavatipour, M.R.: A bound on the chromatic number of the square of a planar graph. J. Combin. Theory Ser. B
94(2), 189–213 (2005)
MathSciNetCrossRef
5.
Zurück zum Zitat Thomassen, C.: The square of a planar cubic graph is \(7\)-colorable. J. Combin. Theory Ser. B 128, 192–218 (2018) MathSciNetCrossRef Thomassen, C.: The square of a planar cubic graph is
\(7\)-colorable. J. Combin. Theory Ser. B
128, 192–218 (2018)
MathSciNetCrossRef
6.
Zurück zum Zitat Wenger, G.: Graphs with given diameter and a coloring problem, pp. 1–11. University of Dortmund, Germany (1977) Wenger, G.: Graphs with given diameter and a coloring problem, pp. 1–11. University of Dortmund, Germany (1977)
7.
Zurück zum Zitat Yuehua, Bu, Lü, Xia: The choosability of the 2-distance coloring of a graph. J. Zhejiang Norm. Univ. 38(3), 279–285 (2015) MATH Yuehua, Bu, Lü, Xia: The choosability of the 2-distance coloring of a graph. J. Zhejiang Norm. Univ.
38(3), 279–285 (2015)
MATH
- Titel
- The List 2-Distance Coloring of Sparse Graphs
- DOI
- https://doi.org/10.1007/978-981-15-2810-1_14
- Autoren:
-
Yue Wang
Tao Pan
Lei Sun
- Verlag
- Springer Singapore
- Sequenznummer
- 14