Skip to main content

2019 | OriginalPaper | Buchkapitel

The Masterpieces of John Forbes Nash Jr.

verfasst von : Camillo De Lellis

Erschienen in: The Abel Prize 2013-2017

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this set of notes I follow Nash’s four groundbreaking works on real algebraic manifolds, on isometric embeddings of Riemannian manifolds and on the continuity of solutions to parabolic equations. My aim has been to stay as close as possible to Nash’s original arguments, but at the same time present them with a more modern language and notation. Occasionally I have also provided detailed proofs of the points that Nash leaves to the reader.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In a short autobiographical note, cf. [80, Ch. 2], Nash states that he made his important discovery while completing his PhD at Princeton. In his own words “…I was fortunate enough, besides developing the idea which led to “NonCooperative Games”, also to make a nice discovery relating manifolds and real algebraic varieties. So, I was prepared actually for the possibility that the game theory work would not be regarded as acceptable as a thesis in the mathematics department and then that I could realize the objective of a Ph.D. thesis with the other results.”
 
2
Here we are using the nontrivial fact that in a connected real analytic manifold any pair of points can be joined by a real analytic arc. One simple argument goes as follows: use first Whitney’s theorem to assume, without loss of generality, that Σ is a real analytic submanifold of \(\mathbb R^N\). Fix two points p and q and use the existence of a real analytic projection in a neighborhood of Σ to reduce our claim to the existence of a real analytic arc connecting any two points inside a connected open subset of the Euclidean space. Finally use the Weierstrass polynomial approximation theorem to show the latter claim.
 
3
The projection of an algebraic subvariety is not always an algebraic subvariety: here as well we are taking advantage of the genericity of the projection.
 
4
Many thanks to Riccardo Ghiloni for suggesting this argument, which follows closely the proof of [55, Lem. 3.2].
 
5
Observe that in this context the closure in the Euclidean topology coincides with the Zariski closure.
 
6
Closed manifolds can be C 1 isometrically immersed in lower dimension: already at the time of Nash’s paper this could be shown in \(\mathbb R^{2n-1}\) (for n > 1!) using Whitney’s immersion theorem. Nowadays we can use Cohen’s solution of the immersion conjecture to lower the dimension to n − a(n), where a(n) is the number of 1’s in the binary expansion of n, cf. [17].
 
7
This is what Nash calls “a stage”, cf. [73, p. 391].
 
8
Although the term is nowadays rather common, it was not introduced by Nash, neither in [73] nor in the subsequent paper [75].
 
9
In his paper Nash claims indeed a much larger K(n), cf. [73, bottom of p. 386].
 
10
The argument of Nash is slightly different, since it covers the space of positive definite matrices with appropriate simplices.
 
11
Nash cites Steenrod’s classical book, [94].
 
12
Nash writes Also they could be obtained by orthogonal propagation, cf. [73, top of p. 387].
 
13
The term free was not coined by Nash, but introduced later in the literature by Gromov.
 
14
It must be observed that Nash employs this fact without explicitly stating it and he does not prove it neither he gives a reference. He uses it twice, once in the proof of Theorem 29 and once in the proof of Proposition 35, and although in the first case one could appeal to a more elementary argument, I could not see an easier way in the second.
 
15
Indeed Nash does not give any argument and just refers to a similar reasoning that he uses in Proposition 35 below.
 
16
Nash suggests an alternative argument which avoids the discussion of the dimensions of \(\mathcal {C} (p, L)\) and \(\mathcal {B}\). One can apply his result on real algebraic varieties to find an embedding v which realizes v(Σ) as a real algebraic submanifold, cf. Theorem 1. Then any set of coefficients \(A^r_{ij}\) which is algebraically independent over the minimal field \(\mathbb F\) of definition of v(Σ) (see Proposition 12) belongs to the complement of \(\mathcal {B}\). Since \(\mathbb F\) is finitely generated over the rationals (see Proposition 12), it has countable cardinality and the conclusion follows easily.
 
17
In Nash’s paper the operator is called S θ, where θ corresponds to ε −1. Since it is nowadays rather unusual to parametrize a family of convolutions as Nash does, I have switched to a more modern convention.
 
18
Nash does not take advantage of this simple remark and introduces instead a rather unusual notation to keep track of all the estimates for the intermediate norms in the bounds corresponding to (59), (60) and (61).
 
19
In fact, De Giorgi’s statement is stronger, since in his theorem ∥v in (125) is replaced by the L 2 norm of v (note that the power of r should be suitably adjusted: the reader can easily guess the correct exponent using the invariance of the statement under the transformation u r(x) = u(rx)).
 
20
Indeed, it was known that the first partial derivatives of the minimizer satisfy a uniformly elliptic partial differential equation with measurable coefficients. De Giorgi’s stronger version of Theorem 50 would then directly imply the desired Hölder estimate. Nash’s version was also sufficient, because a theorem of Stampacchia guaranteed the local boundedness of the first partial derivatives, cf. [93].
 
21
Nash does not provide any argument nor reference, he only briefly mentions that Theorem 48 follows from Theorem 51 using a regularization scheme and the maximum principle. Note that a derivation of the latter under the weak regularity assumptions of Theorem 48 is, however, not entirely trivial: in Sect. 5.8 we give an alternative argument based on a suitable energy estimate.
 
22
In order to simplify the notation we omit the domain of integration when it is the entire space.
 
23
The first two equations are the first two equations from [77, p. 487, (1)] whereas the third should correspond to [77, p. 488, (1c)]. The latter is derived by Nash from the third equation in [77, p. 487, (1)], which in turn corresponds to the classical conservation law for the entropy, see, for instance, [61, (49.5)]. The third equation of [77, p. 487, (1)] contains two typos, which disappear in [77, p. 488, (1c)]. The latter however contains another error: Nash has η and ζ in place of \(\frac {\eta }{\rho T S_T}\) and \(\frac {\zeta }{\rho T S_T}\), but it is easy to see that this would not be consistent with the way he describes its derivation.
Nash’s error has no real consequence for the rest of the note, since he treats the coefficients in front of \(\mathcal {S} (v)_{ij} \mathcal {S} (v)_{ij}\) and (div v)2 as arbitrary real analytic functions of ρ and T and the same holds for \(\frac {\eta }{\rho T S_T}\) and \(\frac {\zeta }{\rho T S_T}\) under the assumption S T ≠ 0. The latter inequality is needed in any case even to treat Nash’s “wrong” equation for T.
 
24
Indeed Nash does not mention the positivity of S T, although this is certainly required by his argument when he reduces the existence of solutions of (240) to the existence of a solutions of a suitable parabolic system, cf. [77, (6) and (7)]: the equation in T is parabolic if and only if \(\frac {\varkappa }{\rho T S_T}\) is positive.
I also have the impression that his argument does not really need the positivity of S and p, although these are quite natural assumptions from the thermodynamical point of view.
 
25
In the modern literature it is customary to take an equivalent definition of X through formal power series; we refer to [58] for the latter and for several important subtleties related to variants of the Nash arc space.
 
26
In fact, Nash claims the proposition with any algebraic subset W of V in place of V s but, although the proposition does hold for W = V s, it turns out to be false for a general algebraic subset W; cf. [21, Ex. 3.7] for a simple explicit counterexample.
 
Literatur
1.
Zurück zum Zitat S. Akbulut and H. King. On approximating submanifolds by algebraic sets and a solution to the Nash conjecture. Invent. Math., 107(1):87–98, 1992.MathSciNetMATH S. Akbulut and H. King. On approximating submanifolds by algebraic sets and a solution to the Nash conjecture. Invent. Math., 107(1):87–98, 1992.MathSciNetMATH
2.
Zurück zum Zitat A. G. Akritas. Sylvester’s forgotten form of the resultant. Fibonacci Quart., 31(4):325–332, 1993.MathSciNetMATH A. G. Akritas. Sylvester’s forgotten form of the resultant. Fibonacci Quart., 31(4):325–332, 1993.MathSciNetMATH
3.
Zurück zum Zitat A. D. Alexandrov. Intrinsic geometry of convex surfaces. OGIZ, Moscow-Leningrad, 1948. A. D. Alexandrov. Intrinsic geometry of convex surfaces. OGIZ, Moscow-Leningrad, 1948.
4.
Zurück zum Zitat G. E. Andrews, R. Askey, and R. Roy. Special functions. Cambridge: Cambridge University Press, 1999.MATH G. E. Andrews, R. Askey, and R. Roy. Special functions. Cambridge: Cambridge University Press, 1999.MATH
5.
Zurück zum Zitat D. G. Aronson. Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc., 73:890–896, 1967.MathSciNetMATH D. G. Aronson. Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc., 73:890–896, 1967.MathSciNetMATH
6.
Zurück zum Zitat D. G. Aronson. Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa (3), 22:607–694, 1968.MathSciNetMATH D. G. Aronson. Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa (3), 22:607–694, 1968.MathSciNetMATH
7.
Zurück zum Zitat R. F. Bass. Diffusions and elliptic operators. Springer-Verlag, New York, 1998.MATH R. F. Bass. Diffusions and elliptic operators. Springer-Verlag, New York, 1998.MATH
8.
Zurück zum Zitat R. F. Bass. On Aronson’s upper bounds for heat kernels. Bull. London Math. Soc., 34(4):415–419, 2002.MathSciNetMATH R. F. Bass. On Aronson’s upper bounds for heat kernels. Bull. London Math. Soc., 34(4):415–419, 2002.MathSciNetMATH
9.
Zurück zum Zitat J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry. Springer-Verlag, Berlin, 1998.MATH J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry. Springer-Verlag, Berlin, 1998.MATH
10.
Zurück zum Zitat J. F. Borisov. The parallel translation on a smooth surface. IV. Vestnik Leningrad. Univ., 14(13):83–92, 1959. J. F. Borisov. The parallel translation on a smooth surface. IV. Vestnik Leningrad. Univ., 14(13):83–92, 1959.
11.
Zurück zum Zitat J. F. Borisov. C 1, α-isometric immersions of Riemannian spaces. Doklady, 163:869–871, 1965. J. F. Borisov. C 1, α-isometric immersions of Riemannian spaces. Doklady, 163:869–871, 1965.
12.
Zurück zum Zitat T. Buckmaster, C. De Lellis, P. Isett, and L. Székelyhidi, Jr. Anomalous dissipation for 1∕5-Hölder Euler flows. Ann. of Math. (2), 182(1):127–172, 2015.MathSciNetMATH T. Buckmaster, C. De Lellis, P. Isett, and L. Székelyhidi, Jr. Anomalous dissipation for 1∕5-Hölder Euler flows. Ann. of Math. (2), 182(1):127–172, 2015.MathSciNetMATH
13.
Zurück zum Zitat T. Buckmaster, C. De Lellis, L. Székelyhidi, Jr., and V. Vicol. Onsager’s conjecture for admissible weak solutions. Comm. Pure Appl. Math., to appear. T. Buckmaster, C. De Lellis, L. Székelyhidi, Jr., and V. Vicol. Onsager’s conjecture for admissible weak solutions. Comm. Pure Appl. Math., to appear.
14.
Zurück zum Zitat C. Burstin. Ein Beitrag zum Problem der Einbettung der Riemannschen Räume in euklidischen Räumen. Rec. Math. Moscou, 38(3–4):74–85, 1931.MATH C. Burstin. Ein Beitrag zum Problem der Einbettung der Riemannschen Räume in euklidischen Räumen. Rec. Math. Moscou, 38(3–4):74–85, 1931.MATH
15.
Zurück zum Zitat E. Cartan. Sur la possibilité de plonger un espace Riemannien donné dans un espace Euclidien. Ann. Soc. Polon. Math., 6:1–7, 1928.MATH E. Cartan. Sur la possibilité de plonger un espace Riemannien donné dans un espace Euclidien. Ann. Soc. Polon. Math., 6:1–7, 1928.MATH
16.
Zurück zum Zitat H. Cartan. Variétés analytiques réelles et variétés analytiques complexes. Bull. Soc. Math. France, 85:77–99, 1957.MathSciNetMATH H. Cartan. Variétés analytiques réelles et variétés analytiques complexes. Bull. Soc. Math. France, 85:77–99, 1957.MathSciNetMATH
17.
Zurück zum Zitat R. L. Cohen. The immersion conjecture for differentiable manifolds. Ann. of Math. (2), 122(2):237–328, 1985.MathSciNetMATH R. L. Cohen. The immersion conjecture for differentiable manifolds. Ann. of Math. (2), 122(2):237–328, 1985.MathSciNetMATH
18.
Zurück zum Zitat S. Cohn-Vossen. Zwei Sätze über die Starrheit der Eiflächen. Nachrichten Göttingen, 1927:125–137, 1927.MATH S. Cohn-Vossen. Zwei Sätze über die Starrheit der Eiflächen. Nachrichten Göttingen, 1927:125–137, 1927.MATH
19.
Zurück zum Zitat S. Conti, C. De Lellis, and L. Székelyhidi, Jr. h-principle and rigidity for C 1, α isometric embeddings. In Nonlinear partial differential equations, volume 7 of Abel Symp., pages 83–116. Springer, Heidelberg, 2012.MATH S. Conti, C. De Lellis, and L. Székelyhidi, Jr. h-principle and rigidity for C 1, α isometric embeddings. In Nonlinear partial differential equations, volume 7 of Abel Symp., pages 83–116. Springer, Heidelberg, 2012.MATH
20.
Zurück zum Zitat T. de Fernex. Three-dimensional counter-examples to the Nash problem. Compos. Math., 149(9):1519–1534, 2013.MathSciNetMATH T. de Fernex. Three-dimensional counter-examples to the Nash problem. Compos. Math., 149(9):1519–1534, 2013.MathSciNetMATH
21.
Zurück zum Zitat T. de Fernex. The space of arcs of an algebraic variety. In Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., Vol. 97.1, pp. 169–197, 2015. T. de Fernex. The space of arcs of an algebraic variety. In Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., Vol. 97.1, pp. 169–197, 2015.
22.
Zurück zum Zitat E. De Giorgi. Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3:25–43, 1957.MathSciNetMATH E. De Giorgi. Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3:25–43, 1957.MathSciNetMATH
23.
Zurück zum Zitat E. De Giorgi. Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. Ital. (4), 1:135–137, 1968.MathSciNetMATH E. De Giorgi. Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. Ital. (4), 1:135–137, 1968.MathSciNetMATH
24.
Zurück zum Zitat E. De Giorgi. Selected papers. Springer-Verlag, Berlin, 2006. Edited by L. Ambrosio, G. Dal Maso, M. Forti, M. Miranda and S. Spagnolo. E. De Giorgi. Selected papers. Springer-Verlag, Berlin, 2006. Edited by L. Ambrosio, G. Dal Maso, M. Forti, M. Miranda and S. Spagnolo.
25.
Zurück zum Zitat C. De Lellis, D. Inauen, and L. Székelyhidi, Jr. A Nash–Kuiper theorem for \(C^{1,\frac {1}{5}-\delta }\) immersions of surfaces in 3 dimensions. Rev. Mat. Iberoam., 34(3):1119–1152, 2018. C. De Lellis, D. Inauen, and L. Székelyhidi, Jr. A Nash–Kuiper theorem for \(C^{1,\frac {1}{5}-\delta }\) immersions of surfaces in 3 dimensions. Rev. Mat. Iberoam., 34(3):1119–1152, 2018.
26.
Zurück zum Zitat C. De Lellis, H. King, J. Milnor, Nachbar J., L. Székelyhidi, Jr., C. Villani, and J. Weinstein. John Forbes Nash, Jr. 1928–2015. Notices of the AMS, 63(5):492–506, 2017. C. De Lellis, H. King, J. Milnor, Nachbar J., L. Székelyhidi, Jr., C. Villani, and J. Weinstein. John Forbes Nash, Jr. 1928–2015. Notices of the AMS, 63(5):492–506, 2017.
27.
Zurück zum Zitat C. De Lellis and L. Székelyhidi, Jr. Dissipative continuous Euler flows. Invent. Math., 193(2):377–407, 2013.MathSciNetMATH C. De Lellis and L. Székelyhidi, Jr. Dissipative continuous Euler flows. Invent. Math., 193(2):377–407, 2013.MathSciNetMATH
28.
Zurück zum Zitat M. Demazure, H. Pinkham, and B. Teissier, editors. Séminaire sur les Singularités des Surfaces, volume 777 of Lecture Notes in Mathematics. Springer, Berlin, 1980. Held at the Centre de Mathématiques de l’École Polytechnique, Palaiseau, 1976–1977.MATH M. Demazure, H. Pinkham, and B. Teissier, editors. Séminaire sur les Singularités des Surfaces, volume 777 of Lecture Notes in Mathematics. Springer, Berlin, 1980. Held at the Centre de Mathématiques de l’École Polytechnique, Palaiseau, 1976–1977.MATH
29.
Zurück zum Zitat Y. Eliashberg and N. Mishachev. Introduction to the h-principle. American Mathematical Society, Providence, RI, 2002.MATH Y. Eliashberg and N. Mishachev. Introduction to the h-principle. American Mathematical Society, Providence, RI, 2002.MATH
30.
Zurück zum Zitat L. C. Evans. Partial differential equations. American Mathematical Society, Providence (R.I.), 1998. L. C. Evans. Partial differential equations. American Mathematical Society, Providence (R.I.), 1998.
31.
Zurück zum Zitat L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. CRC Press, Boca Raton, FL, 1992.MATH L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. CRC Press, Boca Raton, FL, 1992.MATH
32.
Zurück zum Zitat E. B. Fabes and D. W. Stroock. A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Rational Mech. Anal., 96(4):327–338, 1986.MathSciNetMATH E. B. Fabes and D. W. Stroock. A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Rational Mech. Anal., 96(4):327–338, 1986.MathSciNetMATH
33.
Zurück zum Zitat E. Feireisl. Dynamics of viscous compressible fluids. Oxford University Press, Oxford, 2004.MATH E. Feireisl. Dynamics of viscous compressible fluids. Oxford University Press, Oxford, 2004.MATH
34.
Zurück zum Zitat J. Fernández de Bobadilla and M. P. Pereira. The Nash problem for surfaces. Ann. of Math. (2), 176(3):2003–2029, 2012.MathSciNetMATH J. Fernández de Bobadilla and M. P. Pereira. The Nash problem for surfaces. Ann. of Math. (2), 176(3):2003–2029, 2012.MathSciNetMATH
35.
Zurück zum Zitat A. Friedman. Partial differential equations of parabolic type. Prentice-Hall, 1964.MATH A. Friedman. Partial differential equations of parabolic type. Prentice-Hall, 1964.MATH
36.
Zurück zum Zitat P. D. González Pérez and B. Teissier. Toric geometry and the Semple-Nash modification. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 108(1):1–48, 2014.MathSciNetMATH P. D. González Pérez and B. Teissier. Toric geometry and the Semple-Nash modification. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 108(1):1–48, 2014.MathSciNetMATH
37.
Zurück zum Zitat M. J. Greenberg. Rational points in Henselian discrete valuation rings. Inst. Hautes Études Sci. Publ. Math., (31):59–64, 1966.MathSciNetMATH M. J. Greenberg. Rational points in Henselian discrete valuation rings. Inst. Hautes Études Sci. Publ. Math., (31):59–64, 1966.MathSciNetMATH
38.
Zurück zum Zitat M. L. Gromov. Isometric imbeddings and immersions. Dokl. Akad. Nauk SSSR, 192:1206–1209, 1970.MathSciNetMATH M. L. Gromov. Isometric imbeddings and immersions. Dokl. Akad. Nauk SSSR, 192:1206–1209, 1970.MathSciNetMATH
39.
Zurück zum Zitat M. L. Gromov. Partial differential relations. Springer-Verlag, Berlin, 1986.MATH M. L. Gromov. Partial differential relations. Springer-Verlag, Berlin, 1986.MATH
40.
Zurück zum Zitat M. L. Gromov and V. A. Rohlin. Imbeddings and immersions in Riemannian geometry. Uspehi Mat. Nauk, 25(5 (155)):3–62, 1970.MATH M. L. Gromov and V. A. Rohlin. Imbeddings and immersions in Riemannian geometry. Uspehi Mat. Nauk, 25(5 (155)):3–62, 1970.MATH
42.
Zurück zum Zitat M. Günther. Isometric embeddings of Riemannian manifolds. In Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pages 1137–1143. Math. Soc. Japan, Tokyo, 1991. M. Günther. Isometric embeddings of Riemannian manifolds. In Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pages 1137–1143. Math. Soc. Japan, Tokyo, 1991.
43.
Zurück zum Zitat R. S. Hamilton. The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.), 7(1):65–222, 1982.MathSciNetMATH R. S. Hamilton. The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.), 7(1):65–222, 1982.MathSciNetMATH
44.
Zurück zum Zitat W. Hao, S. Leonardi, and J. Nečas. An example of irregular solution to a nonlinear Euler-Lagrange elliptic system with real analytic coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23(1):57–67, 1996.MathSciNetMATH W. Hao, S. Leonardi, and J. Nečas. An example of irregular solution to a nonlinear Euler-Lagrange elliptic system with real analytic coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23(1):57–67, 1996.MathSciNetMATH
45.
Zurück zum Zitat R. Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977.MATH R. Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977.MATH
46.
Zurück zum Zitat A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2002.MATH A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2002.MATH
47.
Zurück zum Zitat G. Herglotz. Über die Starrheit der Eiflächen. Abh. Math. Semin. Hansische Univ., 15:127–129, 1943.MathSciNetMATH G. Herglotz. Über die Starrheit der Eiflächen. Abh. Math. Semin. Hansische Univ., 15:127–129, 1943.MathSciNetMATH
48.
Zurück zum Zitat H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. of Math. (2) 79 (1964), 109–203; ibid. (2), 79:205–326, 1964. H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. of Math. (2) 79 (1964), 109–203; ibid. (2), 79:205–326, 1964.
49.
Zurück zum Zitat M. W. Hirsch. Differential Topology. Springer-Verlag, New York-Heidelberg, 1976.MATH M. W. Hirsch. Differential Topology. Springer-Verlag, New York-Heidelberg, 1976.MATH
50.
Zurück zum Zitat E. Hopf. Zum analytischen Charakter der Lösungen regulärer zweidimensionaler Variationsprobleme. Math. Z., 30:404–413, 1929.MathSciNetMATH E. Hopf. Zum analytischen Charakter der Lösungen regulärer zweidimensionaler Variationsprobleme. Math. Z., 30:404–413, 1929.MathSciNetMATH
51.
52.
Zurück zum Zitat S. Ishii and J. Kollár. The Nash problem on arc families of singularities. Duke Math. J., 120(3):601–620, 2003.MathSciNetMATH S. Ishii and J. Kollár. The Nash problem on arc families of singularities. Duke Math. J., 120(3):601–620, 2003.MathSciNetMATH
53.
Zurück zum Zitat H. Jacobowitz. Implicit function theorems and isometric embeddings. Ann. of Math. (2), 95:191–225, 1972.MathSciNetMATH H. Jacobowitz. Implicit function theorems and isometric embeddings. Ann. of Math. (2), 95:191–225, 1972.MathSciNetMATH
54.
Zurück zum Zitat M. Janet. Sur la possibilité de plonger un espace Riemannien donné à n dimensions dans un espace Euclidien à \(\frac {n(n+1)}{2}\) dimensions. C. R. Acad. Sci., Paris, 183:942–943, 1926. M. Janet. Sur la possibilité de plonger un espace Riemannien donné à n dimensions dans un espace Euclidien à \(\frac {n(n+1)}{2}\) dimensions. C. R. Acad. Sci., Paris, 183:942–943, 1926.
55.
Zurück zum Zitat Z. Jelonek. On the extension of real regular embedding. Bull. Lond. Math. Soc., 40(5):801–806, 2008.MathSciNetMATH Z. Jelonek. On the extension of real regular embedding. Bull. Lond. Math. Soc., 40(5):801–806, 2008.MathSciNetMATH
56.
Zurück zum Zitat J. M. Johnson and J. Kollár. Arc spaces of cA-type singularities. J. Singul., 7:238–252, 2013.MathSciNetMATH J. M. Johnson and J. Kollár. Arc spaces of cA-type singularities. J. Singul., 7:238–252, 2013.MathSciNetMATH
57.
Zurück zum Zitat A. Källén. Isometric embedding of a smooth compact manifold with a metric of low regularity. Ark. Mat., 16(1):29–50, 1978.MathSciNetMATH A. Källén. Isometric embedding of a smooth compact manifold with a metric of low regularity. Ark. Mat., 16(1):29–50, 1978.MathSciNetMATH
58.
Zurück zum Zitat J. Kollár and A. Némethi. Holomorphic arcs on singularities. Invent. Math., 200(1):97–147, 2015.MathSciNetMATH J. Kollár and A. Némethi. Holomorphic arcs on singularities. Invent. Math., 200(1):97–147, 2015.MathSciNetMATH
59.
Zurück zum Zitat S. G. Krantz and H. R. Parks. A Primer of Real Analytic Functions. Birkhäuser Verlag, Basel, 1992.MATH S. G. Krantz and H. R. Parks. A Primer of Real Analytic Functions. Birkhäuser Verlag, Basel, 1992.MATH
60.
Zurück zum Zitat N. H. Kuiper. On C 1-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math., 17:545–556, 683–689, 1955. N. H. Kuiper. On C 1-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math., 17:545–556, 683–689, 1955.
61.
Zurück zum Zitat L. D. Landau and E. M. Lifshitz. Course of theoretical physics. Vol. 6, Fluid dynamics. Pergamon Press, Oxford, second edition, 1987. L. D. Landau and E. M. Lifshitz. Course of theoretical physics. Vol. 6, Fluid dynamics. Pergamon Press, Oxford, second edition, 1987.
62.
Zurück zum Zitat H. Lewy. On the existence of a closed convex surface realizing a given Riemannian metric. Proc. Natl. Acad. Sci. USA, 24:104–106, 1938.MATH H. Lewy. On the existence of a closed convex surface realizing a given Riemannian metric. Proc. Natl. Acad. Sci. USA, 24:104–106, 1938.MATH
63.
Zurück zum Zitat P.-L. Lions. Mathematical topics in fluid mechanics. Vol. 2. The Clarendon Press, Oxford University Press, New York, 1998. Compressible models, Oxford Science Publications. P.-L. Lions. Mathematical topics in fluid mechanics. Vol. 2. The Clarendon Press, Oxford University Press, New York, 1998. Compressible models, Oxford Science Publications.
64.
Zurück zum Zitat J. W. Milnor and J. D. Stasheff. Characteristic classes. Princeton University Press, Princeton, N. J., 1974.MATH J. W. Milnor and J. D. Stasheff. Characteristic classes. Princeton University Press, Princeton, N. J., 1974.MATH
65.
Zurück zum Zitat C. Mooney and O. Savin. Some Singular Minimizers in Low Dimensions in the Calculus of Variations. Arch. Ration. Mech. Anal., 221(1):1–22, 2016.MathSciNetMATH C. Mooney and O. Savin. Some Singular Minimizers in Low Dimensions in the Calculus of Variations. Arch. Ration. Mech. Anal., 221(1):1–22, 2016.MathSciNetMATH
66.
Zurück zum Zitat C. B. Morrey, Jr. On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc., 43:126–166, 1938.MathSciNetMATH C. B. Morrey, Jr. On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc., 43:126–166, 1938.MathSciNetMATH
67.
Zurück zum Zitat C. B. Morrey, Jr. Second-order elliptic systems of differential equations. In Contributions to the theory of partial differential equations, Annals of Mathematics Studies, no. 33, pages 101–159. Princeton University Press, Princeton, N. J., 1954. C. B. Morrey, Jr. Second-order elliptic systems of differential equations. In Contributions to the theory of partial differential equations, Annals of Mathematics Studies, no. 33, pages 101–159. Princeton University Press, Princeton, N. J., 1954.
68.
Zurück zum Zitat J. Moser. A new technique for the construction of solutions of non-linear differential equations. Proc. Nat. Acad. Sci. USA, 47:1824–1831, 1961.MATH J. Moser. A new technique for the construction of solutions of non-linear differential equations. Proc. Nat. Acad. Sci. USA, 47:1824–1831, 1961.MATH
69.
Zurück zum Zitat J. Moser. On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math., 14:577–591, 1961.MathSciNetMATH J. Moser. On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math., 14:577–591, 1961.MathSciNetMATH
70.
Zurück zum Zitat J. Moser. A rapidly convergent iteration method and non-linear differential equations. II. Ann. Scuola Norm. Sup. Pisa (3), 20:499–535, 1966. J. Moser. A rapidly convergent iteration method and non-linear differential equations. II. Ann. Scuola Norm. Sup. Pisa (3), 20:499–535, 1966.
71.
Zurück zum Zitat J. Moser. A rapidly convergent iteration method and non-linear partial differential equations. I. Ann. Scuola Norm. Sup. Pisa (3), 20:265–315, 1966. J. Moser. A rapidly convergent iteration method and non-linear partial differential equations. I. Ann. Scuola Norm. Sup. Pisa (3), 20:265–315, 1966.
74.
Zurück zum Zitat J. Nash. A path space and the Stiefel-Whitney classes. Proc. Nat. Acad. Sci. U.S.A., 41:320–321, 1955.MathSciNetMATH J. Nash. A path space and the Stiefel-Whitney classes. Proc. Nat. Acad. Sci. U.S.A., 41:320–321, 1955.MathSciNetMATH
75.
Zurück zum Zitat J. Nash. The imbedding problem for Riemannian manifolds. Ann. of Math. (2), 63:20–63, 1956.MathSciNetMATH J. Nash. The imbedding problem for Riemannian manifolds. Ann. of Math. (2), 63:20–63, 1956.MathSciNetMATH
76.
Zurück zum Zitat J. Nash. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math., 80:931–954, 1958.MathSciNetMATH J. Nash. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math., 80:931–954, 1958.MathSciNetMATH
77.
Zurück zum Zitat J. Nash. Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. France, 90:487–497, 1962.MathSciNetMATH J. Nash. Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. France, 90:487–497, 1962.MathSciNetMATH
78.
Zurück zum Zitat J. Nash. Analyticity of the solutions of implicit function problems with analytic data. Ann. of Math. (2), 84:345–355, 1966.MathSciNetMATH J. Nash. Analyticity of the solutions of implicit function problems with analytic data. Ann. of Math. (2), 84:345–355, 1966.MathSciNetMATH
79.
80.
Zurück zum Zitat J. Nash. The essential John Nash. Princeton University Press, Princeton, NJ, 2002. Edited by H. W. Kuhn and S. Nasar. J. Nash. The essential John Nash. Princeton University Press, Princeton, NJ, 2002. Edited by H. W. Kuhn and S. Nasar.
81.
Zurück zum Zitat L. Nirenberg. The determination of a closed convex surface having given line element. ProQuest LLC, Ann Arbor, MI, 1949. Thesis (Ph.D.)–New York University. L. Nirenberg. The determination of a closed convex surface having given line element. ProQuest LLC, Ann Arbor, MI, 1949. Thesis (Ph.D.)–New York University.
82.
Zurück zum Zitat L. Nirenberg. The Weyl and Minkowski problems in differential geometry in the large. Comm. Pure Appl. Math., 6:337–394, 1953.MathSciNetMATH L. Nirenberg. The Weyl and Minkowski problems in differential geometry in the large. Comm. Pure Appl. Math., 6:337–394, 1953.MathSciNetMATH
83.
84.
Zurück zum Zitat C. Plénat and M. Spivakovsky. The Nash problem and its solution: a survey. J. Singul., 13:229–244, 2015.MathSciNetMATH C. Plénat and M. Spivakovsky. The Nash problem and its solution: a survey. J. Singul., 13:229–244, 2015.MathSciNetMATH
85.
Zurück zum Zitat A. V. Pogorelov. Izgibanie vypuklyh poverhnosteı̆. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1951. A. V. Pogorelov. Izgibanie vypuklyh poverhnosteı̆. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1951.
86.
Zurück zum Zitat A. V. Pogorelov. Extrinsic geometry of convex surfaces. American Mathematical Society, Providence, R.I., 1973.MATH A. V. Pogorelov. Extrinsic geometry of convex surfaces. American Mathematical Society, Providence, R.I., 1973.MATH
87.
Zurück zum Zitat W. Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, third edition, 1976.MATH W. Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, third edition, 1976.MATH
88.
Zurück zum Zitat L. Schläfli. Nota alla memoria del sig. Beltrami, “Sugli spazii di curvatura costante”. Annali di Mat. (2), 5:178–193, 1871. L. Schläfli. Nota alla memoria del sig. Beltrami, “Sugli spazii di curvatura costante”. Annali di Mat. (2), 5:178–193, 1871.
89.
Zurück zum Zitat J. Schwartz. On Nash’s implicit functional theorem. Comm. Pure Appl. Math., 13:509–530, 1960.MathSciNetMATH J. Schwartz. On Nash’s implicit functional theorem. Comm. Pure Appl. Math., 13:509–530, 1960.MathSciNetMATH
90.
Zurück zum Zitat J. G. Semple. Some investigations in the geometry of curve and surface elements. Proc. London Math. Soc. (3), 4:24–49, 1954.MathSciNetMATH J. G. Semple. Some investigations in the geometry of curve and surface elements. Proc. London Math. Soc. (3), 4:24–49, 1954.MathSciNetMATH
91.
Zurück zum Zitat M. Shiota. Nash manifolds, volume 1269 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987.MATH M. Shiota. Nash manifolds, volume 1269 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987.MATH
92.
Zurück zum Zitat M. Spivakovsky. Sandwiched singularities and desingularization of surfaces by normalized Nash transformations. Ann. of Math. (2), 131(3):411–491, 1990.MathSciNetMATH M. Spivakovsky. Sandwiched singularities and desingularization of surfaces by normalized Nash transformations. Ann. of Math. (2), 131(3):411–491, 1990.MathSciNetMATH
93.
Zurück zum Zitat G. Stampacchia. Sistemi di equazioni di tipo ellittico a derivate parziali del primo ordine e proprietà delle estremali degli integrali multipli. Ricerche Mat., 1:200–226, 1952.MathSciNetMATH G. Stampacchia. Sistemi di equazioni di tipo ellittico a derivate parziali del primo ordine e proprietà delle estremali degli integrali multipli. Ricerche Mat., 1:200–226, 1952.MathSciNetMATH
94.
Zurück zum Zitat N. Steenrod. The Topology of Fibre Bundles. Princeton Mathematical Series, vol. 14. Princeton University Press, Princeton, N. J., 1951. N. Steenrod. The Topology of Fibre Bundles. Princeton Mathematical Series, vol. 14. Princeton University Press, Princeton, N. J., 1951.
95.
Zurück zum Zitat V. Šverák and X. Yan. A singular minimizer of a smooth strongly convex functional in three dimensions. Calc. Var. Partial Differential Equations, 10(3):213–221, 2000.MathSciNetMATH V. Šverák and X. Yan. A singular minimizer of a smooth strongly convex functional in three dimensions. Calc. Var. Partial Differential Equations, 10(3):213–221, 2000.MathSciNetMATH
96.
Zurück zum Zitat V. Šverák and X. Yan. Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Natl. Acad. Sci. USA, 99(24):15269–15276, 2002.MathSciNetMATH V. Šverák and X. Yan. Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Natl. Acad. Sci. USA, 99(24):15269–15276, 2002.MathSciNetMATH
97.
Zurück zum Zitat L. Székelyhidi, Jr. The h-principle and turbulence. ICM 2014 Proceedings Volume, 2014. L. Székelyhidi, Jr. The h-principle and turbulence. ICM 2014 Proceedings Volume, 2014.
98.
Zurück zum Zitat R. Thom. Espaces fibrés en sphères et carrés de Steenrod. Ann. Sci. Ecole Norm. Sup. (3), 69:109–182, 1952.MathSciNetMATH R. Thom. Espaces fibrés en sphères et carrés de Steenrod. Ann. Sci. Ecole Norm. Sup. (3), 69:109–182, 1952.MathSciNetMATH
99.
100.
Zurück zum Zitat L. D. Tráng and B. Teissier. On the mathematical work of Professor Heisuke Hironaka. Publ. Res. Inst. Math. Sci., 44(2):165–177, 2008.MathSciNetMATH L. D. Tráng and B. Teissier. On the mathematical work of Professor Heisuke Hironaka. Publ. Res. Inst. Math. Sci., 44(2):165–177, 2008.MathSciNetMATH
101.
Zurück zum Zitat A. H. Wallace. Algebraic approximation of manifolds. Proc. London Math. Soc. (3), 7:196–210, 1957.MathSciNetMATH A. H. Wallace. Algebraic approximation of manifolds. Proc. London Math. Soc. (3), 7:196–210, 1957.MathSciNetMATH
102.
Zurück zum Zitat A. Weil. Foundations of Algebraic Geometry. American Mathematical Society, New York, 1946.MATH A. Weil. Foundations of Algebraic Geometry. American Mathematical Society, New York, 1946.MATH
103.
Zurück zum Zitat H. Weyl. Über die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement. Zürich. Naturf. Ges. 61, 40–72, 1916.MATH H. Weyl. Über die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement. Zürich. Naturf. Ges. 61, 40–72, 1916.MATH
105.
106.
Zurück zum Zitat H. Whitney. The self-intersections of a smooth n-manifold in 2n-space. Ann. of Math. (2), 45:220–246, 1944.MathSciNetMATH H. Whitney. The self-intersections of a smooth n-manifold in 2n-space. Ann. of Math. (2), 45:220–246, 1944.MathSciNetMATH
107.
Zurück zum Zitat S.-T. Yau. Open problems in geometry. In Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), volume 54 of Proc. Sympos. Pure Math., pages 1–28. Amer. Math. Soc., Providence, RI, 1993. S.-T. Yau. Open problems in geometry. In Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), volume 54 of Proc. Sympos. Pure Math., pages 1–28. Amer. Math. Soc., Providence, RI, 1993.
Metadaten
Titel
The Masterpieces of John Forbes Nash Jr.
verfasst von
Camillo De Lellis
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-99028-6_19