Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 9/2022

01.09.2022 | ELECTRICAL AND MAGNETIC PROPERTIES

The Materials Science of Modern Technical Superconducting Materials

verfasst von: A. S. Tsapleva, I. M. Abdyukhanov, V. I. Pantsyrnyi, M. V. Alekseev, D. N. Rakov

Erschienen in: Physics of Metals and Metallography | Ausgabe 9/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In this review, we consider the current state of development of both low-temperature superconductors based on Nb3Sn and high-temperature superconductors. The effect of the preparation method and the composition of alloying elements on the microstructure of the superconducting layer and the current-carrying capacity of superconductors based on Nb3Sn and high-temperature superconductors of the second generation based on yttrium and bismuth cuprates, magnesium diboride, and iron-containing compounds is analyzed.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
1.
Zurück zum Zitat B. T. Matthias, T. H. Geballe, S. Geller, and E. Corenzwit, “Superconductivity of Nb 3Sn,” Phys. Rev. 95, 1435 (1954). CrossRef B. T. Matthias, T. H. Geballe, S. Geller, and E. Corenzwit, “Superconductivity of Nb 3Sn,” Phys. Rev. 95, 1435 (1954). CrossRef
2.
Zurück zum Zitat B. T. Matthias, M. Marezio, E. Corenzwit, A. S. Cooper, and H. E. Barz, “High-temperature superconductors, the first ternary system,” Science 175, 1465–1466 (1972). CrossRef B. T. Matthias, M. Marezio, E. Corenzwit, A. S. Cooper, and H. E. Barz, “High-temperature superconductors, the first ternary system,” Science 175, 1465–1466 (1972). CrossRef
3.
Zurück zum Zitat A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan, “Superconductivity at 18 K in potassium-doped C 60,” Nature 350, 600–601 (1991). CrossRef A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan, “Superconductivity at 18 K in potassium-doped C 60,” Nature 350, 600–601 (1991). CrossRef
4.
Zurück zum Zitat K. Holczer, O. Klein, G. Grüner, J. D. Thompson, F. Diederich, and R. Whetten, “Critical magnetic fields in the superconducting state of K 3C 60,, Rhys. Rev. Lett. 67, 271–274 (1991). CrossRef K. Holczer, O. Klein, G. Grüner, J. D. Thompson, F. Diederich, and R. Whetten, “Critical magnetic fields in the superconducting state of K 3C 60,, Rhys. Rev. Lett. 67, 271–274 (1991). CrossRef
5.
Zurück zum Zitat V. Buntar, M. Riccò, L. Cristofolini, H. W. Weber, and F. Bolzoni, “Critical fields of the superconducting fullerene RbCs 2C 60,, Phys. Rev. B: Condens. Matter 52 (6), 4432–4437 (1995). CrossRef V. Buntar, M. Riccò, L. Cristofolini, H. W. Weber, and F. Bolzoni, “Critical fields of the superconducting fullerene RbCs 2C 60,, Phys. Rev. B: Condens. Matter 52 (6), 4432–4437 (1995). CrossRef
6.
Zurück zum Zitat J. Xing, Sh. Li, X. Ding, H. Yang, and H.-H. Wen, “Superconductivity appears in the vicinity of semiconducting-like behavior in CeO 1 – xF xBiS 2,” Phys. Rev. B 86 (21), 214518 (2012). CrossRef J. Xing, Sh. Li, X. Ding, H. Yang, and H.-H. Wen, “Superconductivity appears in the vicinity of semiconducting-like behavior in CeO 1 – xF xBiS 2,” Phys. Rev. B 86 (21), 214518 (2012). CrossRef
7.
Zurück zum Zitat J. C. Bednorz and K. A. Müller, “Possible High T c Superconductivity in the Ba–La–Cu–O system,” Condens. Matter 64, 189–193 (1986). J. C. Bednorz and K. A. Müller, “Possible High T c Superconductivity in the Ba–La–Cu–O system,” Condens. Matter 64, 189–193 (1986).
8.
Zurück zum Zitat N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature, 410, 63–64 (2001). CrossRef N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature, 410, 63–64 (2001). CrossRef
9.
Zurück zum Zitat Z. A. Ren, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, “Superconductivity in the iron-based F-doped layered quaternary compound Nd[O 1 – xF x]FeAs,” Europhys. Lett. 82 (5), 57002 (2008). CrossRef Z. A. Ren, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, “Superconductivity in the iron-based F-doped layered quaternary compound Nd[O 1 – xF x]FeAs,” Europhys. Lett. 82 (5), 57002 (2008). CrossRef
10.
Zurück zum Zitat C. Wang, L. J. Li, S. Chi, Z. W. Zhu, Z. Ren, Y. K. Li, Y. T. Wang, X. Lin, Y. K. Luo, S. A. Jiang, X. F. Xu, G. H. Cao, and Z. A. Xu, “Thorium-doping-induced superconductivity up to 56 K in Gd 1 – xTh xFeAsO,” Europhys. Lett. 83 (6), 67006 (2008). CrossRef C. Wang, L. J. Li, S. Chi, Z. W. Zhu, Z. Ren, Y. K. Li, Y. T. Wang, X. Lin, Y. K. Luo, S. A. Jiang, X. F. Xu, G. H. Cao, and Z. A. Xu, “Thorium-doping-induced superconductivity up to 56 K in Gd 1 – xTh xFeAsO,” Europhys. Lett. 83 (6), 67006 (2008). CrossRef
11.
Zurück zum Zitat F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, “Superconductivity in the PbO-type structure α-FeSe,” Proc. Natl. Acad. Sci. U. S. A. 105 (38), 14262–14264 (2008). CrossRef F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, “Superconductivity in the PbO-type structure α-FeSe,” Proc. Natl. Acad. Sci. U. S. A. 105 (38), 14262–14264 (2008). CrossRef
13.
Zurück zum Zitat M. Parizh, Y. Lvovsky, and M. Sumption, “Conductors for commercial MRI magnets beyond NbTi: requirements and challenges,” Supercond. Sci. Technol. 30 (1), 014007 (2016). CrossRef M. Parizh, Y. Lvovsky, and M. Sumption, “Conductors for commercial MRI magnets beyond NbTi: requirements and challenges,” Supercond. Sci. Technol. 30 (1), 014007 (2016). CrossRef
16.
Zurück zum Zitat Ch. Yukai, T. Jingyu, W. Lijiao, Zh. Linhao, Y. Jianquan, and X. Qingjin, “SPPC Status,” HK IAS HEP Conference (2019). Ch. Yukai, T. Jingyu, W. Lijiao, Zh. Linhao, Y. Jianquan, and X. Qingjin, “SPPC Status,” HK IAS HEP Conference (2019).
17.
Zurück zum Zitat X. Qingjin, “High field superconducting magnet program for accelerators in China,” 10th International Particle Accelerator Conference (Melbourne, Australia, 2019). X. Qingjin, “High field superconducting magnet program for accelerators in China,” 10th International Particle Accelerator Conference (Melbourne, Australia, 2019).
18.
Zurück zum Zitat L. R. Motowidlo and G. M. Ozeryansky, “A new PIT Nb 3Sn conductor for high magnetic field applications,” IEEE Trans. Appl. Supercond. 18 (2), 1001–1004 (2008). CrossRef L. R. Motowidlo and G. M. Ozeryansky, “A new PIT Nb 3Sn conductor for high magnetic field applications,” IEEE Trans. Appl. Supercond. 18 (2), 1001–1004 (2008). CrossRef
20.
Zurück zum Zitat H. Kurahashi, K. Itoh, S. Matsumoto, T. Kiyoshi, H. Wada, Y. Murakami, H. Yasunaka, S. Hayashi, and Y. Otani, “Effect of third-element additions on the upper critical field of bronze-processed Nb 3Sn,” IEEE Trans. Appl. Supercond. 15 (2), 3385–3388 (2005). CrossRef H. Kurahashi, K. Itoh, S. Matsumoto, T. Kiyoshi, H. Wada, Y. Murakami, H. Yasunaka, S. Hayashi, and Y. Otani, “Effect of third-element additions on the upper critical field of bronze-processed Nb 3Sn,” IEEE Trans. Appl. Supercond. 15 (2), 3385–3388 (2005). CrossRef
21.
Zurück zum Zitat A. Shikov, A. Nikulin, V. Pantsyrnyi, A. Vorobieva, G. Vedernikov, A. Silaev, E. Dergunova, S. Soudiev, and I. Akimov, “Russian superconducting materials for magnet systems of fusion reactors,” J. Nucl. Mater. 283– 287, Part 2, 968–972 (2000). CrossRef A. Shikov, A. Nikulin, V. Pantsyrnyi, A. Vorobieva, G. Vedernikov, A. Silaev, E. Dergunova, S. Soudiev, and I. Akimov, “Russian superconducting materials for magnet systems of fusion reactors,” J. Nucl. Mater. 283287, Part 2, 968–972 (2000). CrossRef
22.
Zurück zum Zitat L. V. Potanina, A. K. Shikov, G. P. Vedernikov, A. E. Vorobieva, V. I. Pantsyrnyi, I. N. Gubkin, A. G. Sylaev, E. I. Plashkin, E. A. Dergunova, and S. V. Soudjev, “Recent progress of low temperature superconducting materials at Bochvar Institute,” Phys. C 386 (15), 390–393 (2003). CrossRef L. V. Potanina, A. K. Shikov, G. P. Vedernikov, A. E. Vorobieva, V. I. Pantsyrnyi, I. N. Gubkin, A. G. Sylaev, E. I. Plashkin, E. A. Dergunova, and S. V. Soudjev, “Recent progress of low temperature superconducting materials at Bochvar Institute,” Phys. C 386 (15), 390–393 (2003). CrossRef
24.
Zurück zum Zitat W. L. Neijmeijer and B. H. Kolster, “The ternary-system Nb–Sn–Cu at 675°C,” Int. J. Mater. Res. 78 (10), 730–737 (1987). CrossRef W. L. Neijmeijer and B. H. Kolster, “The ternary-system Nb–Sn–Cu at 675°C,” Int. J. Mater. Res. 78 (10), 730–737 (1987). CrossRef
25.
Zurück zum Zitat B. E. Vishal Ryan Nazareth, “Characterization of the interdiffusion microstructure A15 layer growth and stoichiometry in tube-type Nb 3Sn composites,” A Thesis Presented in Partial Fulfillment of the Requirements for The Degree of Master of Science in the Graduate School of the Ohio State University, 2008, p. 92. B. E. Vishal Ryan Nazareth, “Characterization of the interdiffusion microstructure A15 layer growth and stoichiometry in tube-type Nb 3Sn composites,” A Thesis Presented in Partial Fulfillment of the Requirements for The Degree of Master of Science in the Graduate School of the Ohio State University, 2008, p. 92.
26.
Zurück zum Zitat E. A. Dergunova, I. A. Karateev, A. L. Vasil’ev, K. A. Mareev, M. O. Kurilkin, A. S. Tsapleva, I. M. Abdyukhanov, M. V. Alekseev, and A. V. Lomov, “Study of the specific features of kinetics formation and structure of the superconducting Nb 3Sn phase in technical superconductors,” Crystallogr. Rep. 64 (2), 252–259 (2019). CrossRef E. A. Dergunova, I. A. Karateev, A. L. Vasil’ev, K. A. Mareev, M. O. Kurilkin, A. S. Tsapleva, I. M. Abdyukhanov, M. V. Alekseev, and A. V. Lomov, “Study of the specific features of kinetics formation and structure of the superconducting Nb 3Sn phase in technical superconductors,” Crystallogr. Rep. 64 (2), 252–259 (2019). CrossRef
27.
Zurück zum Zitat E. Yu. Klimenko, V. S. Kruglov, N. N. Martovetskii, I. V. Moskalenko, S. I. Novikov, N. A. Chernoplekov, V. P. Kosenko, V. E. Kutnii, V. V. Pronevich, P. I. Slobodchikov, V. F. Gogulya, I. I. Davydov, I. B. Kalinin, V. A. Kovaleva, A. D. Nikulin, V. Ya. Fil’kin, V. V. Shestakov, A. K. Shikov, G. G. Arzumanyan, G. P. Kazanchyan, and V. A. Kazarov, “Superconducting wire for toroidal magnet T-15,” Atomn. Energiya 63, 248–251 (1987). E. Yu. Klimenko, V. S. Kruglov, N. N. Martovetskii, I. V. Moskalenko, S. I. Novikov, N. A. Chernoplekov, V. P. Kosenko, V. E. Kutnii, V. V. Pronevich, P. I. Slobodchikov, V. F. Gogulya, I. I. Davydov, I. B. Kalinin, V. A. Kovaleva, A. D. Nikulin, V. Ya. Fil’kin, V. V. Shestakov, A. K. Shikov, G. G. Arzumanyan, G. P. Kazanchyan, and V. A. Kazarov, “Superconducting wire for toroidal magnet T-15,” Atomn. Energiya 63, 248–251 (1987).
28.
Zurück zum Zitat R. Flükiger, D. Uglietti, C. Senatore, and F. Buta, “Microstructure, composition and critical current density of superconducting Nb 3Sn wires,” Cryogenics 48, 293–307 (2008). CrossRef R. Flükiger, D. Uglietti, C. Senatore, and F. Buta, “Microstructure, composition and critical current density of superconducting Nb 3Sn wires,” Cryogenics 48, 293–307 (2008). CrossRef
29.
Zurück zum Zitat V. Pantsyrny, A. Shikov, and A. Vorobieva, “Nb 3Sn material development in Russia,” Cryogenics 48, 354–370 (2008). CrossRef V. Pantsyrny, A. Shikov, and A. Vorobieva, “Nb 3Sn material development in Russia,” Cryogenics 48, 354–370 (2008). CrossRef
30.
Zurück zum Zitat A. Shikov, V. Pantsyrny, A. Vorobieva, E. Dergunova, L. Vogdaev, N. Kozlenkova, K. Mareev, V. Tronza, V. Sytnikov, A. Taran, and A. Rychagov, “Development of the bronze strand of TF Conductor sample for testing in SULTAN facility,” IEEE Trans. Appl. Supercond. 19 (3), 1466–1469 (2009). CrossRef A. Shikov, V. Pantsyrny, A. Vorobieva, E. Dergunova, L. Vogdaev, N. Kozlenkova, K. Mareev, V. Tronza, V. Sytnikov, A. Taran, and A. Rychagov, “Development of the bronze strand of TF Conductor sample for testing in SULTAN facility,” IEEE Trans. Appl. Supercond. 19 (3), 1466–1469 (2009). CrossRef
31.
Zurück zum Zitat I. M. Abdyukhanov and N. V. Konovalova, “Study of the microstructure and mechanical properties of bronze with an increased to 16 wt. % content of Sn used for Nb 3Sn superconductors,” Vopr. Atomn. Nauki Tekhniki. Materialoved. Nov. Mater., No. 3, 15–25 (2019). I. M. Abdyukhanov and N. V. Konovalova, “Study of the microstructure and mechanical properties of bronze with an increased to 16 wt. % content of Sn used for Nb 3Sn superconductors,” Vopr. Atomn. Nauki Tekhniki. Materialoved. Nov. Mater., No. 3, 15–25 (2019).
32.
Zurück zum Zitat D. V. Kudashov, H. R. Muller, and R. Zauter, “Macro and micro structure of spray formed tin_bronze,” in Continuous Casting: Proceedings of the International Conference on Continuous Casting of Non-Ferrous Metals (Wiley–VCH, Weinheim, 2006), pp. 256–264. D. V. Kudashov, H. R. Muller, and R. Zauter, “Macro and micro structure of spray formed tin_bronze,” in Continuous Casting: Proceedings of the International Conference on Continuous Casting of Non-Ferrous Metals (Wiley–VCH, Weinheim, 2006), pp. 256–264.
33.
Zurück zum Zitat I. L. Deryagina, E. N. Popova, S. V. Sudareva, E. P. Romanov, L. V. Elokhina, E. A. Dergunova, A. E. Vorob’eva, and I. M. Abdyukhanov, “Structure of a titanium-alloyed high-tin bronze obtained by the osprey method,” Phys. Met. Metallogr. 110, 162–174 (2010). CrossRef I. L. Deryagina, E. N. Popova, S. V. Sudareva, E. P. Romanov, L. V. Elokhina, E. A. Dergunova, A. E. Vorob’eva, and I. M. Abdyukhanov, “Structure of a titanium-alloyed high-tin bronze obtained by the osprey method,” Phys. Met. Metallogr. 110, 162–174 (2010). CrossRef
35.
Zurück zum Zitat A. S. Tsapleva, A. E. Vorob’eva, I. M. Abdyukhanov, E. A. Dergunova, K. A. Mareev, and M. N. Nasibulin, “Study of Nb3Sn superconductors for strong magnetic fields,” Vopr. Atomn. Nauki Tekhniki. Materialoved. Nov. Mater., No. 2, 16–24 (2014). A. S. Tsapleva, A. E. Vorob’eva, I. M. Abdyukhanov, E. A. Dergunova, K. A. Mareev, and M. N. Nasibulin, “Study of Nb3Sn superconductors for strong magnetic fields,” Vopr. Atomn. Nauki Tekhniki. Materialoved. Nov. Mater., No. 2, 16–24 (2014).
36.
Zurück zum Zitat A. Ballarino and L. Bottura, “Targets for R&D on Nb 3Sn conductor for high energy physics,” IEEE Trans. Appl. Supercond. 25 (3), 6000906 (2015). CrossRef A. Ballarino and L. Bottura, “Targets for R&D on Nb 3Sn conductor for high energy physics,” IEEE Trans. Appl. Supercond. 25 (3), 6000906 (2015). CrossRef
37.
Zurück zum Zitat M. Suenaga, D. O. Welch, R. L. Sabatini, O. F. Kramer, and S. Okuda, “Superconducting critical temperatures, critical magnetic fields, lattice parameters, and chemical compositions of ‘‘bulk’’ pure and alloyed Nb 3Sn produced by the bronze process,” J. Appl. Phys. 59 (3), 840 (2015). https://​doi.​org/​10.​1063/​1.​336607 CrossRef M. Suenaga, D. O. Welch, R. L. Sabatini, O. F. Kramer, and S. Okuda, “Superconducting critical temperatures, critical magnetic fields, lattice parameters, and chemical compositions of ‘‘bulk’’ pure and alloyed Nb 3Sn produced by the bronze process,” J. Appl. Phys. 59 (3), 840 (2015). https://​doi.​org/​10.​1063/​1.​336607 CrossRef
38.
Zurück zum Zitat M. Suenaga, S. Okuda, R. Sabatini, K. Itoh, and T. S. Luhman, “Superconducting properties of (Nb,Ti) 3Sn wires fabricated by the bronze process,” in Advances in Cryogenic Engineering, Ed. by R. P. Reed and A. F. Clark (Plenum, New York, 1982), vol. 28, p. 379. M. Suenaga, S. Okuda, R. Sabatini, K. Itoh, and T. S. Luhman, “Superconducting properties of (Nb,Ti) 3Sn wires fabricated by the bronze process,” in Advances in Cryogenic Engineering, Ed. by R. P. Reed and A. F. Clark (Plenum, New York, 1982), vol. 28, p. 379.
39.
Zurück zum Zitat A. K. Shikov, V. I. Panstsyrnyi, A. V. Vorob’eva, E. A. Dergunova, S. V. Sud’ev, K. A. Mareev, N. A. Belyakov, I. M. Abdyukhanov, and V. V. Sergeev, “Microstructure and properties of Nb 3Sn superconductors for international thermonuclear experimental reactor,” Met. Sci. Heat Treat. 46 (11–12), 504–513 (2004). CrossRef A. K. Shikov, V. I. Panstsyrnyi, A. V. Vorob’eva, E. A. Dergunova, S. V. Sud’ev, K. A. Mareev, N. A. Belyakov, I. M. Abdyukhanov, and V. V. Sergeev, “Microstructure and properties of Nb 3Sn superconductors for international thermonuclear experimental reactor,” Met. Sci. Heat Treat. 46 (11–12), 504–513 (2004). CrossRef
41.
Zurück zum Zitat I. L. Deryagina, E. N. Popova, E. P. Romanov, E. A. Dergunova, A. E. Vorobyeva, and S. M. Balaev, “Evolution of the nanocrystalline structure of Nb 3Sn superconducting layers upon two-stage annealing of Nb/Cu-Sn composites alloyed with titanium,” Phys. Met. Metallogr. 113 (4), 391–405 (2012). CrossRef I. L. Deryagina, E. N. Popova, E. P. Romanov, E. A. Dergunova, A. E. Vorobyeva, and S. M. Balaev, “Evolution of the nanocrystalline structure of Nb 3Sn superconducting layers upon two-stage annealing of Nb/Cu-Sn composites alloyed with titanium,” Phys. Met. Metallogr. 113 (4), 391–405 (2012). CrossRef
42.
Zurück zum Zitat E. Dergunova, A. Vorobyeva, I. Abdyukhanov, K. Mareev, and S. Balaev, “The study of Nb 3Sn phase content and structure dependence on the way of Ti doping in superconductorsby bronze route,” Phys. Proc. 36, 1510–1515 (2015). E. Dergunova, A. Vorobyeva, I. Abdyukhanov, K. Mareev, and S. Balaev, “The study of Nb 3Sn phase content and structure dependence on the way of Ti doping in superconductorsby bronze route,” Phys. Proc. 36, 1510–1515 (2015).
43.
Zurück zum Zitat E. Gregory, B. A. Zeitlin, M. Tomsic, T. Pyon, M. D. Sumption, E. W. Collings, E. Barzi, D. R. Dietderich, R. M. Scanlan, A. A. Polyanskii, and P. J. Lee, “Attempts to reduce a.c. losses in high current density internal-tin Nb 3Sn,” AIP Conf. Proc. 711, 789 (2004). https://​doi.​org/​10.​1063/​1.​1774643 CrossRef E. Gregory, B. A. Zeitlin, M. Tomsic, T. Pyon, M. D. Sumption, E. W. Collings, E. Barzi, D. R. Dietderich, R. M. Scanlan, A. A. Polyanskii, and P. J. Lee, “Attempts to reduce a.c. losses in high current density internal-tin Nb 3Sn,” AIP Conf. Proc. 711, 789 (2004). https://​doi.​org/​10.​1063/​1.​1774643 CrossRef
44.
Zurück zum Zitat R. K. Dhaka, Sn and Ti Diffusion, Phase Formation, Stoichiometry, and Superconducting Properties of Internal—Sn-Type Nb 3Sn Conductors (Ohio State University, 2007). R. K. Dhaka, Sn and Ti Diffusion, Phase Formation, Stoichiometry, and Superconducting Properties of Internal—Sn-Type Nb 3Sn Conductors (Ohio State University, 2007).
45.
Zurück zum Zitat J. Parrell, The (Challenges to) Industrialization of HEP-Grade Nb 3 Sn and BSCCO-2212 (Oxford Superconducting Technology, Carteret, 2014). J. Parrell, The (Challenges to) Industrialization of HEP-Grade Nb 3 Sn and BSCCO-2212 (Oxford Superconducting Technology, Carteret, 2014).
46.
Zurück zum Zitat M. Suenaga, K. Aihara, K. Kaiho, and T. S. Luchman, Superconducting Properties of (Nb,Ta) 3 Sn Wires Fabricated by the Bronze Process (Rep. BNL – 29391, 1979), p. 19. M. Suenaga, K. Aihara, K. Kaiho, and T. S. Luchman, Superconducting Properties of (Nb,Ta) 3 Sn Wires Fabricated by the Bronze Process (Rep. BNL – 29391, 1979), p. 19.
47.
Zurück zum Zitat J. Parrell, Y. Zhang, M. Field, M. Meinesz, Y. Huang, H. Miao, S. Hong, N. Cheggour, and L. Goodrich, “Internal tin Nb 3Sn conductors engineered for Fusion and Particle Accelerator Applications,” IEEE Trans. Appl. Supercond. 19 (3), 2573–2579 (2009). CrossRef J. Parrell, Y. Zhang, M. Field, M. Meinesz, Y. Huang, H. Miao, S. Hong, N. Cheggour, and L. Goodrich, “Internal tin Nb 3Sn conductors engineered for Fusion and Particle Accelerator Applications,” IEEE Trans. Appl. Supercond. 19 (3), 2573–2579 (2009). CrossRef
48.
Zurück zum Zitat Abächerli V., Uglietti D., “The influence of Ti doping methods on the high field performance of (Nb,Ta,Ti) 3Sn multifilamentary wires using Osprey bronze,” IEEE Trans. Appl. Supercond. 15, 3482–3485 (2005). CrossRef Abächerli V., Uglietti D., “The influence of Ti doping methods on the high field performance of (Nb,Ta,Ti) 3Sn multifilamentary wires using Osprey bronze,” IEEE Trans. Appl. Supercond. 15, 3482–3485 (2005). CrossRef
49.
Zurück zum Zitat V. Abächerli and F. Butaiet, “Investigation on the effect of Ta additions on J c and n of (Nb, Ti) 3Sn bronze processed multifilamentary wires at high magnetic Fields,” IEEE Trans. Appl. Supercond. 17, 2564–2567 (2007). CrossRef V. Abächerli and F. Butaiet, “Investigation on the effect of Ta additions on J c and n of (Nb, Ti) 3Sn bronze processed multifilamentary wires at high magnetic Fields,” IEEE Trans. Appl. Supercond. 17, 2564–2567 (2007). CrossRef
50.
Zurück zum Zitat I. M. Abdyukhanov, V. I. Pantsyrny, A. G. Silaev, A. S. Tsapleva, N. V. Konovalova, M. Alekseev, E. Dergunova, K. Mareev, M. Nasibulin, V. Drobyshev, M. Kravtsova, P. A. Lykianov, and M. Krylova, “Study of the superconducting layer microstructure and structure (Nb,Ti,Ta) 3Sn bronze trands properties,” IOP Conf. Ser.: J. Phys.: Conf. Ser. 1293, 012040 (2019). https://​doi.​org/​10.​1088/​1742-6596/​1293/​1/​012040 I. M. Abdyukhanov, V. I. Pantsyrny, A. G. Silaev, A. S. Tsapleva, N. V. Konovalova, M. Alekseev, E. Dergunova, K. Mareev, M. Nasibulin, V. Drobyshev, M. Kravtsova, P. A. Lykianov, and M. Krylova, “Study of the superconducting layer microstructure and structure (Nb,Ti,Ta) 3Sn bronze trands properties,” IOP Conf. Ser.: J. Phys.: Conf. Ser. 1293, 012040 (2019). https://​doi.​org/​10.​1088/​1742-6596/​1293/​1/​012040
52.
Zurück zum Zitat X. Wu, X. Peng, M. D. Sumption, M. Tomsic, E. Gregory, and E. W. Collings, “Ti and Sn diffusion and its influence on phase formation in internal-tin Nb 3Sn superconductor strands,” IEEE Trans. Appl. Supercond. 15 (2), 3399–3402 (2005). CrossRef X. Wu, X. Peng, M. D. Sumption, M. Tomsic, E. Gregory, and E. W. Collings, “Ti and Sn diffusion and its influence on phase formation in internal-tin Nb 3Sn superconductor strands,” IEEE Trans. Appl. Supercond. 15 (2), 3399–3402 (2005). CrossRef
55.
Zurück zum Zitat N. Banno, Y. Miyamoto, Zh. Yu, T. Morita, Ts. Yagai, Sh. Nimori, and K. Tachikawa, “Effects of element addition into Cu matrix for IT-processed Nb 3Sn wires,” IEEE Trans. Appl. Supercond. 28 (4), 6000905 (2018). CrossRef N. Banno, Y. Miyamoto, Zh. Yu, T. Morita, Ts. Yagai, Sh. Nimori, and K. Tachikawa, “Effects of element addition into Cu matrix for IT-processed Nb 3Sn wires,” IEEE Trans. Appl. Supercond. 28 (4), 6000905 (2018). CrossRef
56.
Zurück zum Zitat T. Spina, A. Ballarino, L. Bottura, Ch. Scheuerlein, and R. Flukiger, “Artificial pinning in Nb 3Sn wires,” IEEE Trans. Appl. Supercond. 27 (4), 8001205 (2017). CrossRef T. Spina, A. Ballarino, L. Bottura, Ch. Scheuerlein, and R. Flukiger, “Artificial pinning in Nb 3Sn wires,” IEEE Trans. Appl. Supercond. 27 (4), 8001205 (2017). CrossRef
57.
Zurück zum Zitat D. R. Dietderich, M. Kelman, J. R. Litty, and R. M. Scanlan, “High critical current densities in Nb 3Sn films with engineered microstructures – artificial pinning microstructures,” ICMC '97 (Portland, 1997). D. R. Dietderich, M. Kelman, J. R. Litty, and R. M. Scanlan, “High critical current densities in Nb 3Sn films with engineered microstructures – artificial pinning microstructures,” ICMC '97 (Portland, 1997).
58.
Zurück zum Zitat L. E. Rumaner, M. G. Benz, and E. L. Hall, “The role of oxygen and zirconium in the formation and growth of Nb 3Sn grains,” Metall. Mater. Trans. A 25, 213–219 (1994). CrossRef L. E. Rumaner, M. G. Benz, and E. L. Hall, “The role of oxygen and zirconium in the formation and growth of Nb 3Sn grains,” Metall. Mater. Trans. A 25, 213–219 (1994). CrossRef
59.
Zurück zum Zitat B. A. Zeitlin, E. Gregory, J. Marte, M. Benz, T. Pyon, R. Scanlan, and D. Dietderich, “Results on mono element internal tin Nb 3Sn conductors (MEIT) with Nb 7.5Ta and Nb(1Zr + Ox) filaments,” IEEE Trans. Appl. Supercond. 15 (2), 3393–3368 (2005). CrossRef B. A. Zeitlin, E. Gregory, J. Marte, M. Benz, T. Pyon, R. Scanlan, and D. Dietderich, “Results on mono element internal tin Nb 3Sn conductors (MEIT) with Nb 7.5Ta and Nb(1Zr + Ox) filaments,” IEEE Trans. Appl. Supercond. 15 (2), 3393–3368 (2005). CrossRef
60.
Zurück zum Zitat X. Xu, M. D. Sumption, and X. Peng, “Internally oxidized Nb 3Sn strands with fine grain size and high critical current density,” Adv. Mater. 27, 1346–1350 (2015). CrossRef X. Xu, M. D. Sumption, and X. Peng, “Internally oxidized Nb 3Sn strands with fine grain size and high critical current density,” Adv. Mater. 27, 1346–1350 (2015). CrossRef
61.
Zurück zum Zitat X. Xu, X. Peng, and M. Sumption, Patent No. WO/2015/175064 (US2015/016431) (2015). X. Xu, X. Peng, and M. Sumption, Patent No. WO/2015/175064 (US2015/016431) (2015).
62.
Zurück zum Zitat X. Xu, X. Peng, M. Sumption, and E. W. Collings, “Recent progress in application of internal oxidation technique in Nb 3Sn strands,” IEEE Trans. Appl. Supercond. 27 (4), 6000105 (2015). X. Xu, X. Peng, M. Sumption, and E. W. Collings, “Recent progress in application of internal oxidation technique in Nb 3Sn strands,” IEEE Trans. Appl. Supercond. 27 (4), 6000105 (2015).
63.
Zurück zum Zitat I. M. Abdyukhanov, A. S. Tsapleva, N. V. Konovalova, P. A. Luk’yanov, I. I. Savel’ev, M. V. Alekseev, and D. S. Novosilova, “Influence of zirconium doping on microstructure of the superconducting layer and electro-physical properties of Nb 3Sn superconductors,” Vopr. Atomn. Nauki Tekhniki. Materialoved. Nov. Mater. No. 1, 12–21 (2020). I. M. Abdyukhanov, A. S. Tsapleva, N. V. Konovalova, P. A. Luk’yanov, I. I. Savel’ev, M. V. Alekseev, and D. S. Novosilova, “Influence of zirconium doping on microstructure of the superconducting layer and electro-physical properties of Nb 3Sn superconductors,” Vopr. Atomn. Nauki Tekhniki. Materialoved. Nov. Mater. No. 1, 12–21 (2020).
64.
Zurück zum Zitat X. Xu, J. Rochester, X. Peng, M. Sumption, and M. Tomsic, “Ternary Nb 3Sn superconductors with artificial pinning centers and high upper critical fields,” Supercond. Sci. Technol. 32, 02LT01 (2019). X. Xu, J. Rochester, X. Peng, M. Sumption, and M. Tomsic, “Ternary Nb 3Sn superconductors with artificial pinning centers and high upper critical fields,” Supercond. Sci. Technol. 32, 02LT01 (2019).
65.
Zurück zum Zitat Sh. Balachandran, Ch. Tarantini, P. J. Lee, and F. Kametani, Y-F. Su, B. Walker, W. L. Starch, and D. C. Larbalestier, “Beneficial influence of Hf and Zr additions to Nb 4 at % Ta on the vortex pinning of Nb 3Sn with and without an O source,” Supercond. Sci. Technol. 32 (4), 044006 (2019). CrossRef Sh. Balachandran, Ch. Tarantini, P. J. Lee, and F. Kametani, Y-F. Su, B. Walker, W. L. Starch, and D. C. Larbalestier, “Beneficial influence of Hf and Zr additions to Nb 4 at % Ta on the vortex pinning of Nb 3Sn with and without an O source,” Supercond. Sci. Technol. 32 (4), 044006 (2019). CrossRef
66.
Zurück zum Zitat V. A. Al’tov, “Nb 3Sn multifilamentary wires and tapes for high-field magnetic systems,” Adv. Cryogen. Eng. 42, 521–1487 (1997). V. A. Al’tov, “Nb 3Sn multifilamentary wires and tapes for high-field magnetic systems,” Adv. Cryogen. Eng. 42, 521–1487 (1997).
67.
Zurück zum Zitat N. I. Kozlenkova, I. I. Akimov, D. N. Rakov, and A. K. Shikov, “Multifilamentary conductors based on Bi-2212 HTS-compound,” Proc. Int. Conf. Magnet Technology (MT-15) (Science Press, 1998), pp. 1064–1066. N. I. Kozlenkova, I. I. Akimov, D. N. Rakov, and A. K. Shikov, “Multifilamentary conductors based on Bi-2212 HTS-compound,” Proc. Int. Conf. Magnet Technology (MT-15) (Science Press, 1998), pp. 1064–1066.
68.
Zurück zum Zitat A. K. Shikov, D. B. Gusakov, D. N. Rakov, V. A. Vargin, I. I. Akimov, E. V. Kotova, M. I. Medvedev, and V. S. Kruglov, “The influence of processing conditions on the structure and critical properties of Bi-2223 composite tapes,” IEEE Trans. Appl. Supercond. 15 (2), 2466–2469 (2005). CrossRef A. K. Shikov, D. B. Gusakov, D. N. Rakov, V. A. Vargin, I. I. Akimov, E. V. Kotova, M. I. Medvedev, and V. S. Kruglov, “The influence of processing conditions on the structure and critical properties of Bi-2223 composite tapes,” IEEE Trans. Appl. Supercond. 15 (2), 2466–2469 (2005). CrossRef
70.
Zurück zum Zitat A. S. Nikiforov, A. D. Nikulin, V. Ya. Fil’kin, N. V. Shishkov, I. I. Davydov, A. K. Shikov, E. V. Antipova, N. A. Chernoplekov, and E. Yu. Klimenko “ Composite conductors based on superconducting compounds La–sr–Cu–O and Y–Ba–Cu–O, “Atomnaya Energiya 62, 421–422 (1987). A. S. Nikiforov, A. D. Nikulin, V. Ya. Fil’kin, N. V. Shishkov, I. I. Davydov, A. K. Shikov, E. V. Antipova, N. A. Chernoplekov, and E. Yu. Klimenko “ Composite conductors based on superconducting compounds La–sr–Cu–O and Y–Ba–Cu–O, “Atomnaya Energiya 62, 421–422 (1987).
71.
Zurück zum Zitat A. Goyal, M. P. Paranthaman, and U. Schoop, “The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors,” MRS Bull. 29 (8), 552–561 (2004). CrossRef A. Goyal, M. P. Paranthaman, and U. Schoop, “The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors,” MRS Bull. 29 (8), 552–561 (2004). CrossRef
72.
Zurück zum Zitat M. W. Rupich, X. Li, S. Sathyamurthy, C. L. H. Thieme, K. DeMoranville, J. Gannon, and S. Fleshler, “Second generation wire development at AMSC,” IEEE Trans. Appl. Supercond. 23 (3), 6601205 (2013). CrossRef M. W. Rupich, X. Li, S. Sathyamurthy, C. L. H. Thieme, K. DeMoranville, J. Gannon, and S. Fleshler, “Second generation wire development at AMSC,” IEEE Trans. Appl. Supercond. 23 (3), 6601205 (2013). CrossRef
73.
Zurück zum Zitat V. Selvamanickam, Y. Xie, J. Reeves, and Y. Chen, “MOCVD-based YBCO-coated conductors,” MRS Bull. 29, 579–582 (2004). CrossRef V. Selvamanickam, Y. Xie, J. Reeves, and Y. Chen, “MOCVD-based YBCO-coated conductors,” MRS Bull. 29, 579–582 (2004). CrossRef
74.
Zurück zum Zitat N. Kashima, T. Niwa, S. Nagaya, K. Onabe, T. Saito, T. Muroga, S. Miyata, T. Watanabe, and Y. Yamada, “Long tape processing for coated conductors by multiple-stage CVD method,” Phys. C 412– 414, Part 2, 944–947 (2004). CrossRef N. Kashima, T. Niwa, S. Nagaya, K. Onabe, T. Saito, T. Muroga, S. Miyata, T. Watanabe, and Y. Yamada, “Long tape processing for coated conductors by multiple-stage CVD method,” Phys. C 412414, Part 2, 944–947 (2004). CrossRef
75.
Zurück zum Zitat Y. Ma, “Present status of development of superconducting materials in China,” Supercond. News Forum (SNF), No. 39 (2017). Y. Ma, “Present status of development of superconducting materials in China,” Supercond. News Forum (SNF), No. 39 (2017).
76.
Zurück zum Zitat A. Usoskin, A. Freyhardt, and C. Herbert, “YBCO-coated conductors manufactured by high-rate pulsed laser deposition,” MRS Bull. 29 (8), 583–589 (2004). CrossRef A. Usoskin, A. Freyhardt, and C. Herbert, “YBCO-coated conductors manufactured by high-rate pulsed laser deposition,” MRS Bull. 29 (8), 583–589 (2004). CrossRef
77.
Zurück zum Zitat https://www.fujikura.co.jp/eng/products/newbusiness/ superconductors/01/superconductor.pdf. https://www.fujikura.co.jp/eng/products/newbusiness/ superconductors/01/superconductor.pdf.
78.
Zurück zum Zitat S. Hahakura, K. Fujino, M. Konishi, and K. Ohmatsu, “Development of HoBCO coated conductor by PLD method,” Phys. C 412– 414, 931–936 (2004). CrossRef S. Hahakura, K. Fujino, M. Konishi, and K. Ohmatsu, “Development of HoBCO coated conductor by PLD method,” Phys. C 412414, 931–936 (2004). CrossRef
79.
Zurück zum Zitat L. Jae-Hun, K. Jaemin, L. Hunju, and M. Seung-Hyun RCE-DR, “A novel process for coated conductor fabrication with high performance,” Proc. Conf. “The workshop on Advanced Superconducting Materials and Magnets”, 044018 (2019). L. Jae-Hun, K. Jaemin, L. Hunju, and M. Seung-Hyun RCE-DR, “A novel process for coated conductor fabrication with high performance,” Proc. Conf. “The workshop on Advanced Superconducting Materials and Magnets”, 044018 (2019).
80.
Zurück zum Zitat https://www.suptech.com/superconducting-wire/. https://www.suptech.com/superconducting-wire/.
81.
Zurück zum Zitat https://www.theva.com/products/#pro-line. https://www.theva.com/products/#pro-line.
82.
Zurück zum Zitat A. Molodyk, S. Samoilenkov, A. Markelov, P. Degtyarenko, S. Lee, V. Petrykin, M. Gaifullin, A. Mankevich, A. Vavilov, B. Sorbom, J. Cheng, S. Garberg, L. Kesler, Z. Hartwing, S. Gavrilkin, A. Tsvetkov, T. Okada, S. Awaji, D. Abraimov, A. Francis, G. Bradford, D. Larbalestier, C. Senatore, M. Bonura, A. E. Pantoja, S. C. Wimbush, N. M. Strickland, and A. Vasiliev, “Development and large volume production of extremely high current density YBa 2Cu 3O 7 superconducting wires for fusion,” Sci. Rep. 11, 2084 (2021). https://​doi.​org/​10.​1038/​s41598-021-81559-z A. Molodyk, S. Samoilenkov, A. Markelov, P. Degtyarenko, S. Lee, V. Petrykin, M. Gaifullin, A. Mankevich, A. Vavilov, B. Sorbom, J. Cheng, S. Garberg, L. Kesler, Z. Hartwing, S. Gavrilkin, A. Tsvetkov, T. Okada, S. Awaji, D. Abraimov, A. Francis, G. Bradford, D. Larbalestier, C. Senatore, M. Bonura, A. E. Pantoja, S. C. Wimbush, N. M. Strickland, and A. Vasiliev, “Development and large volume production of extremely high current density YBa 2Cu 3O 7 superconducting wires for fusion,” Sci. Rep. 11, 2084 (2021). https://​doi.​org/​10.​1038/​s41598-021-81559-z
83.
Zurück zum Zitat W. Hirata, Sh. Muto, Yu. Adachi, T. Yoshida, S. Fujita, K. Kakimoto, Y. Iijima, M. Daibo, and S. Awaji, “Artificial pinning centers-doped RE-based coated conductors,” Fujikura Tech. Rev., 23–28 (2019). W. Hirata, Sh. Muto, Yu. Adachi, T. Yoshida, S. Fujita, K. Kakimoto, Y. Iijima, M. Daibo, and S. Awaji, “Artificial pinning centers-doped RE-based coated conductors,” Fujikura Tech. Rev., 23–28 (2019).
84.
Zurück zum Zitat Y. Zhang, S. Yamano, and D. Hazelton, “Fukushima Toru REBCO HTS wire manufacturing and continuous development at SuperPower,” IAS-HEP Mini-Workshop on High Temperature Superconducting Materials and Magnets (Hong Kong, 2018). Y. Zhang, S. Yamano, and D. Hazelton, “Fukushima Toru REBCO HTS wire manufacturing and continuous development at SuperPower,” IAS-HEP Mini-Workshop on High Temperature Superconducting Materials and Magnets (Hong Kong, 2018).
85.
Zurück zum Zitat S. Nariki, S. J. Seo, N. Sakai, and M. Murakami, “Influence of the size of Gd211 starting powder on the critical current density of Gd–Ba–Cu–O bulk superconductor,” Supercond. Sci. Technol. 13, 778–784 (2000). CrossRef S. Nariki, S. J. Seo, N. Sakai, and M. Murakami, “Influence of the size of Gd211 starting powder on the critical current density of Gd–Ba–Cu–O bulk superconductor,” Supercond. Sci. Technol. 13, 778–784 (2000). CrossRef
86.
Zurück zum Zitat S. Nariki, N. Sakai, and M. Murakami, “Preparation and properties of OCMG-processed Gd–Ba–Cu–O bulk superconductors with very fine Gd211 particles,” Phys. C 357–360, Part 1, 811–813 (2001). CrossRef S. Nariki, N. Sakai, and M. Murakami, “Preparation and properties of OCMG-processed Gd–Ba–Cu–O bulk superconductors with very fine Gd211 particles,” Phys. C 357–360, Part 1, 811–813 (2001). CrossRef
87.
Zurück zum Zitat I. B. Bobylev, N. A. Zyuzeva, E. I. Kuznetsova, T. P. Krinitsina, S. V. Sudareva, and E. P. Romanov, “Effect of doping and substitution on the low-temperature decomposition of oxygen-nonstoichiometric Ba 2YCu 3O 7 – d,” Phys. Met. Metallogr. 108, 59–66 (2009). CrossRef I. B. Bobylev, N. A. Zyuzeva, E. I. Kuznetsova, T. P. Krinitsina, S. V. Sudareva, and E. P. Romanov, “Effect of doping and substitution on the low-temperature decomposition of oxygen-nonstoichiometric Ba 2YCu 3O 7 – d,” Phys. Met. Metallogr. 108, 59–66 (2009). CrossRef
88.
Zurück zum Zitat K. Yokoyama, R. Igarashi, R. Togasaki, and T. Oka, “Improvement of the trapped field performance of a holed superconducting bulk magnet,” IEEE Trans. Appl. Supercond. 25 (3), 6800804 (2015). CrossRef K. Yokoyama, R. Igarashi, R. Togasaki, and T. Oka, “Improvement of the trapped field performance of a holed superconducting bulk magnet,” IEEE Trans. Appl. Supercond. 25 (3), 6800804 (2015). CrossRef
89.
Zurück zum Zitat D. Zhou, M. Izumi, T. Fujimoto, Y. Zhang, W. L. Zhou, and K. Xu, “Introducing nanosized pinning centers Into Bulk Gd–Ba–Cu–O by infiltration method,” IEEE Trans. Appl. Supercond. 25 (3), 6800204 (2015). CrossRef D. Zhou, M. Izumi, T. Fujimoto, Y. Zhang, W. L. Zhou, and K. Xu, “Introducing nanosized pinning centers Into Bulk Gd–Ba–Cu–O by infiltration method,” IEEE Trans. Appl. Supercond. 25 (3), 6800204 (2015). CrossRef
90.
Zurück zum Zitat V. Hardy, A. Wahl, S. Hébert, A. Ruyter, J. Provost, D. Groult, and Ch. Simon, “Accommodation of vortices to tilted line defects in high-Tc superconductors with various electronic anisotropies,” Phys. Rev. B 54, 656–664 (1996). CrossRef V. Hardy, A. Wahl, S. Hébert, A. Ruyter, J. Provost, D. Groult, and Ch. Simon, “Accommodation of vortices to tilted line defects in high-Tc superconductors with various electronic anisotropies,” Phys. Rev. B 54, 656–664 (1996). CrossRef
91.
Zurück zum Zitat M. Sparing, E. Backen, T. Freudenberg, R. Huhne, B. Rellinghaus, L. Schultz, and B. Holzapfel, “Artificial pinning centres in YBCO thin films induced by substrate decoration with gas-phase-prepared Y 2O 3 nanoparticles,” Supercond. Sci. Technol. 20, S239 (2007). M. Sparing, E. Backen, T. Freudenberg, R. Huhne, B. Rellinghaus, L. Schultz, and B. Holzapfel, “Artificial pinning centres in YBCO thin films induced by substrate decoration with gas-phase-prepared Y 2O 3 nanoparticles,” Supercond. Sci. Technol. 20, S239 (2007).
92.
Zurück zum Zitat F. J. Baca, D. Fisher, R. L. S. Emergo, and J. Z. Wu, “Pore formation and increased critical current density in YBa 2Cu 3O x films deposited on a substrate surface modulated by Y 2O 3 nanoparticles,” Supercond. Sci. Technol. 20, 554 (2007). F. J. Baca, D. Fisher, R. L. S. Emergo, and J. Z. Wu, “Pore formation and increased critical current density in YBa 2Cu 3O x films deposited on a substrate surface modulated by Y 2O 3 nanoparticles,” Supercond. Sci. Technol. 20, 554 (2007).
93.
Zurück zum Zitat T. Haugan, P. N. Barnes, R. Wheeler, F. Meisenkothen, and M. Sumption, “Addition of nanoparticle dispersions to enhance flux pinning of YBa 2Cu 3O 7 – x superconductors,” Nature 430, 867–870 (2004). CrossRef T. Haugan, P. N. Barnes, R. Wheeler, F. Meisenkothen, and M. Sumption, “Addition of nanoparticle dispersions to enhance flux pinning of YBa 2Cu 3O 7 – x superconductors,” Nature 430, 867–870 (2004). CrossRef
94.
Zurück zum Zitat T. Aytug, M. Paranthaman, A. A. Gapud, S. Kang, H. M. Christen, K. J. Leonard, P. M. Martin, J. R. Thompson, D. K. Christen, R. Meng, I. Rusakova, C. W. Chu, and T. Johansen, “Enhancement of flux pinning and critical currents in YBa 2Cu 3O 7 – δ films by nanoscale iridium pretreatment of substrate surfaces,” J. Appl. Phys. 98, 114309 (2005). T. Aytug, M. Paranthaman, A. A. Gapud, S. Kang, H. M. Christen, K. J. Leonard, P. M. Martin, J. R. Thompson, D. K. Christen, R. Meng, I. Rusakova, C. W. Chu, and T. Johansen, “Enhancement of flux pinning and critical currents in YBa 2Cu 3O 7 – δ films by nanoscale iridium pretreatment of substrate surfaces,” J. Appl. Phys. 98, 114309 (2005).
95.
Zurück zum Zitat P. Mikheenko, A. Sarkar, V.-S. Dang, J. L. Tanner, J. S. Abell, and A. Crisan, “c-Axis correlated extended defects and critical current in YBa 2Cu 3O x films grown on Au and Ag-nano dot decorated substrates,” Phys. C 469, 798 (2009). CrossRef P. Mikheenko, A. Sarkar, V.-S. Dang, J. L. Tanner, J. S. Abell, and A. Crisan, “c-Axis correlated extended defects and critical current in YBa 2Cu 3O x films grown on Au and Ag-nano dot decorated substrates,” Phys. C 469, 798 (2009). CrossRef
96.
Zurück zum Zitat T. Aytug, M. Paranthaman, K. J. Leonard, K. Kim, A. O. Ijadoula, Y. Zhang, E. Tuncer, J. R. Thompson, and D. K. Christen, “Enhanced flux pinning and critical currents in YBa 2Cu 3O 7 – δ films by nanoparticle surface decoration: Extension to coated conductor templates,” J. Appl. Phys. 104, 043906 (2008). CrossRef T. Aytug, M. Paranthaman, K. J. Leonard, K. Kim, A. O. Ijadoula, Y. Zhang, E. Tuncer, J. R. Thompson, and D. K. Christen, “Enhanced flux pinning and critical currents in YBa 2Cu 3O 7 – δ films by nanoparticle surface decoration: Extension to coated conductor templates,” J. Appl. Phys. 104, 043906 (2008). CrossRef
97.
Zurück zum Zitat K. Yamada, M. Mukaida, H. Kai, R. Teranishi, A. Ichinose, R. Kita, S. Kato, S. Horii, Y. Yoshida, K. Matsumoto, and S. Toh, “Transmission electron microscopy characterization of nanorods in BaNb 2O 6-doped ErBa 2Cu 3O 7 – δ films,” Appl. Phys. Lett. 92, 112503 (2008). CrossRef K. Yamada, M. Mukaida, H. Kai, R. Teranishi, A. Ichinose, R. Kita, S. Kato, S. Horii, Y. Yoshida, K. Matsumoto, and S. Toh, “Transmission electron microscopy characterization of nanorods in BaNb 2O 6-doped ErBa 2Cu 3O 7 – δ films,” Appl. Phys. Lett. 92, 112503 (2008). CrossRef
98.
Zurück zum Zitat J. L. MacManus Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley, M. Maley, and D. E. Peterson, “Strongly enhanced current densities in superconducting coated conductors of YBa 2Cu 3O 7 – x + BaZrO 3,” Nat. Mater., No. 3, 439–443 (2004). J. L. MacManus Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley, M. Maley, and D. E. Peterson, “Strongly enhanced current densities in superconducting coated conductors of YBa 2Cu 3O 7 – x + BaZrO 3,” Nat. Mater., No. 3, 439–443 (2004).
99.
Zurück zum Zitat A. Goyal, S. Kang, KJ. Leonard, P. M. Martin, A. A. Gapud, M. Varela, M. Paranthaman, A. O. Ijaduola, E. D. Specht, J. R. Thompson, D. K. Christen, S. J. Pennycook, and F. A. List, “Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa 2Cu 3O 7 – δ films,” Supercond. Sci. Technol. 18, 1533–1538 (2005). A. Goyal, S. Kang, KJ. Leonard, P. M. Martin, A. A. Gapud, M. Varela, M. Paranthaman, A. O. Ijaduola, E. D. Specht, J. R. Thompson, D. K. Christen, S. J. Pennycook, and F. A. List, “Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa 2Cu 3O 7 – δ films,” Supercond. Sci. Technol. 18, 1533–1538 (2005).
100.
Zurück zum Zitat Y. Yamada, K. Takahashi, H. Kobayashi, M. Konishi, T. Watanabe, A. Ibi, T. Muroga, and S. Miyata, “Epitaxial nanostructure and defects effective for pinning in Y(RE)Ba 2Cu 3O 7 – x coated conductors,” Appl. Phys. Lett. 87, 132502 (2005). CrossRef Y. Yamada, K. Takahashi, H. Kobayashi, M. Konishi, T. Watanabe, A. Ibi, T. Muroga, and S. Miyata, “Epitaxial nanostructure and defects effective for pinning in Y(RE)Ba 2Cu 3O 7 – x coated conductors,” Appl. Phys. Lett. 87, 132502 (2005). CrossRef
101.
Zurück zum Zitat S. Kang, A. Goyal, J. Li, A. Gapud, P. Martin, L. Heatherly, J. Thompson, D. Christen, F. List, M. Paranthaman, and D. Lee, “High-performance high-Tc superconducting wires,” Science 311, 1911–1914 (2006). CrossRef S. Kang, A. Goyal, J. Li, A. Gapud, P. Martin, L. Heatherly, J. Thompson, D. Christen, F. List, M. Paranthaman, and D. Lee, “High-performance high-Tc superconducting wires,” Science 311, 1911–1914 (2006). CrossRef
102.
Zurück zum Zitat K. Traito, M. Peurla, H. Huhtinen, Yu. P. Stepanov, M. Safonchik, Y. Y. Tse, P. Paturi, and R. Laiho, “Magnetic field dependence of the critical current and the flux pinning mechanism in YBa 2Cu 3O 6 + x films doped with BaZrO 3,” Phys. Rev. B 73, 224522 (2006). CrossRef K. Traito, M. Peurla, H. Huhtinen, Yu. P. Stepanov, M. Safonchik, Y. Y. Tse, P. Paturi, and R. Laiho, “Magnetic field dependence of the critical current and the flux pinning mechanism in YBa 2Cu 3O 6 + x films doped with BaZrO 3,” Phys. Rev. B 73, 224522 (2006). CrossRef
103.
Zurück zum Zitat P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, and R. Kita, “Incorporation of double artificial pinning centers in YBa 2Cu 3O 7 – δ films,” Phys. C 468, 1631–1634 (2008). CrossRef P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, and R. Kita, “Incorporation of double artificial pinning centers in YBa 2Cu 3O 7 – δ films,” Phys. C 468, 1631–1634 (2008). CrossRef
104.
Zurück zum Zitat M. Peurla, H. Huhtinen, M. A. Shakhov, K. Traito, Yu. P. Stepanov, M. Safonchik, P. Paturi, Y. Y. Tse, R. Palai, and R. Laiho, “Effects of nanocrystalline target and columnar defects on flux pinning in pure and BaZrO 3-doped YBa 2Cu 3O 6 + x films in fields up to 30 T,” Phys. Rev. B 75, 184524 (2007). CrossRef M. Peurla, H. Huhtinen, M. A. Shakhov, K. Traito, Yu. P. Stepanov, M. Safonchik, P. Paturi, Y. Y. Tse, R. Palai, and R. Laiho, “Effects of nanocrystalline target and columnar defects on flux pinning in pure and BaZrO 3-doped YBa 2Cu 3O 6 + x films in fields up to 30 T,” Phys. Rev. B 75, 184524 (2007). CrossRef
105.
Zurück zum Zitat P. Paturi, M. Irjala, and H. Huhtinen, “Greatly decreased critical current density anisotropy in YBa 2Cu 3O 6 + x thin films ablated from nanocrystalline and BaZrO 3-doped nanocrystalline targets,” J. Appl. Phys. 103, 123907 (2008). P. Paturi, M. Irjala, and H. Huhtinen, “Greatly decreased critical current density anisotropy in YBa 2Cu 3O 6 + x thin films ablated from nanocrystalline and BaZrO 3-doped nanocrystalline targets,” J. Appl. Phys. 103, 123907 (2008).
106.
Zurück zum Zitat S. H. Wee, A. Goyal, Y. L. Zuev, and C. Cantoni, “High performance superconducting wire in high applied magnetic fields via nanoscale defect engineering,” Supercond. Sci. Technol. 21, 092001 (2008). CrossRef S. H. Wee, A. Goyal, Y. L. Zuev, and C. Cantoni, “High performance superconducting wire in high applied magnetic fields via nanoscale defect engineering,” Supercond. Sci. Technol. 21, 092001 (2008). CrossRef
107.
Zurück zum Zitat M. Safonchik, K. Traito, S. Tuominen, P. Paturi, H. Huhtinen, and R. Laiho, “Magnetic field dependence of the optimal BaZrO 3 concentration in nanostructured YBa 2Cu 3O 7 – δ films,” Supercond. Sci. Technol. 22, 065006 (2009). CrossRef M. Safonchik, K. Traito, S. Tuominen, P. Paturi, H. Huhtinen, and R. Laiho, “Magnetic field dependence of the optimal BaZrO 3 concentration in nanostructured YBa 2Cu 3O 7 – δ films,” Supercond. Sci. Technol. 22, 065006 (2009). CrossRef
108.
Zurück zum Zitat F. J. Baca, P. N. Barnes, R. L. S. Emergo, T. J. Haugan, J. N. Reichart, and J. Z. Wu, “Control of BaZrO 3 nanorod alignment in YBa 2Cu 3O 7 − x thin films by microstructural modulation,” Appl. Phys. Lett. 94, 102512 (2009). CrossRef F. J. Baca, P. N. Barnes, R. L. S. Emergo, T. J. Haugan, J. N. Reichart, and J. Z. Wu, “Control of BaZrO 3 nanorod alignment in YBa 2Cu 3O 7 − x thin films by microstructural modulation,” Appl. Phys. Lett. 94, 102512 (2009). CrossRef
109.
Zurück zum Zitat B. Maiorov, S. A. Baily, H. Zhou, O. Ugurlu, J. A. Kennison, P. C. Dowden, T. G. Holesinger, S. R. Foltyn, and L. Civale, “Synergetic combination of different types of defect to optimize pinning landscape using BaZrO 3-doped YBa 2Cu 3O 7,” Nat. Mater., No. 8, 398–404 (2009). B. Maiorov, S. A. Baily, H. Zhou, O. Ugurlu, J. A. Kennison, P. C. Dowden, T. G. Holesinger, S. R. Foltyn, and L. Civale, “Synergetic combination of different types of defect to optimize pinning landscape using BaZrO 3-doped YBa 2Cu 3O 7,” Nat. Mater., No. 8, 398–404 (2009).
110.
Zurück zum Zitat Y. Chen, V. Selvamanickam, Y. Zhang, Y. Zuev, C. Cantoni, E. Specht, M. Parans Paranthaman, T. Aytug, A. Goyal, and D. Lee, “Enhanced flux pinning by BaZrO 3 and (Gd,Y) 2O 3 nanostructures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes,” Appl. Phys. Lett. 94, 062513 (2009). CrossRef Y. Chen, V. Selvamanickam, Y. Zhang, Y. Zuev, C. Cantoni, E. Specht, M. Parans Paranthaman, T. Aytug, A. Goyal, and D. Lee, “Enhanced flux pinning by BaZrO 3 and (Gd,Y) 2O 3 nanostructures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes,” Appl. Phys. Lett. 94, 062513 (2009). CrossRef
111.
Zurück zum Zitat H. Tobita, K. Notoh, K. Higashikawa, M. Inoue, T. Kiss, T. Kato, T. Hirayama, M. Yoshizumi, T. Izumi, and Y. Shiohara, “Fabrication of BaHfO 3 doped Gd 1Ba 2Cu 3O 7 – δ coated conductors with the high Ic of 85 A/cm-w under 3 T at liquid nitrogen temperature (77 K),” Supercond. Sci. Technol. 25, 062002 (2012). CrossRef H. Tobita, K. Notoh, K. Higashikawa, M. Inoue, T. Kiss, T. Kato, T. Hirayama, M. Yoshizumi, T. Izumi, and Y. Shiohara, “Fabrication of BaHfO 3 doped Gd 1Ba 2Cu 3O 7 – δ coated conductors with the high Ic of 85 A/cm-w under 3 T at liquid nitrogen temperature (77 K),” Supercond. Sci. Technol. 25, 062002 (2012). CrossRef
112.
Zurück zum Zitat K. Matsumoto and P. Mele, “Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors,” Supercond. Sci. Technol. 23, 014001 (2010). CrossRef K. Matsumoto and P. Mele, “Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors,” Supercond. Sci. Technol. 23, 014001 (2010). CrossRef
113.
Zurück zum Zitat V. Selvamanickam, “Progress in development of high-performance REBCO tapes and wires,” IEEE/CSC & ESAS superconductivity news forum (global edition) (2019). Invited presentation 1-MO-CS-01I. V. Selvamanickam, “Progress in development of high-performance REBCO tapes and wires,” IEEE/CSC & ESAS superconductivity news forum (global edition) (2019). Invited presentation 1-MO-CS-01I.
114.
Zurück zum Zitat V. Selvamanickam, Y. Chen, X. Xiong, Y. Y. Xie, J. L. Recent, X. Zhang, Y. Qiao, K. P. Lenseth, R. M. Schmidt, A. Rar, D. W. Hazelton, and K. Tekletsadik, “Progress in second-generation HTS conductor scale-up at SuperPower,” IEEE Trans. Appl. Supercond. 17 (2), 3231–3234 (2007). CrossRef V. Selvamanickam, Y. Chen, X. Xiong, Y. Y. Xie, J. L. Recent, X. Zhang, Y. Qiao, K. P. Lenseth, R. M. Schmidt, A. Rar, D. W. Hazelton, and K. Tekletsadik, “Progress in second-generation HTS conductor scale-up at SuperPower,” IEEE Trans. Appl. Supercond. 17 (2), 3231–3234 (2007). CrossRef
115.
Zurück zum Zitat https://www.s-innovations.ru/vtsp-provod/. https://www.s-innovations.ru/vtsp-provod/.
116.
Zurück zum Zitat S. H. Moon, “Coated conductors by RCE-DR: Process details and scale-up issue,” Proc. “Coated ions Workshop 2018” (2018). S. H. Moon, “Coated conductors by RCE-DR: Process details and scale-up issue,” Proc. “Coated ions Workshop 2018” (2018).
117.
Zurück zum Zitat J.-H. Lee, H. Lee, J.-W. Lee, S.-M. Choi, S.-I. Yoo, and S.-H. Moon, “RCE-DR, a novel process for coated conductor fabrication with high performance,” Supercond. Sci. Technol. 27 (4), 6603204 (2017). J.-H. Lee, H. Lee, J.-W. Lee, S.-M. Choi, S.-I. Yoo, and S.-H. Moon, “RCE-DR, a novel process for coated conductor fabrication with high performance,” Supercond. Sci. Technol. 27 (4), 6603204 (2017).
118.
Zurück zum Zitat J. L. MacManus-Driscoll, M. Bianchetti, A. Kursumovic, G. Kim, W. Jo, H. Wang, J. H. Lee, G. W. Hong, and S. H. Moon, “Strong pinning in very fast grown reactive co-evaporated GdBa 2Cu 3O 7 coated conductors,” APL Mater. 2, 086103 (2014). CrossRef J. L. MacManus-Driscoll, M. Bianchetti, A. Kursumovic, G. Kim, W. Jo, H. Wang, J. H. Lee, G. W. Hong, and S. H. Moon, “Strong pinning in very fast grown reactive co-evaporated GdBa 2Cu 3O 7 coated conductors,” APL Mater. 2, 086103 (2014). CrossRef
119.
Zurück zum Zitat T. Yoshida, A. Ibi, T. Takahashi, M. Yoshizumi, T. Izumi, and Y. Shiohara, “Fabrication of Eu 1Ba 2Cu 3O 7 – δ + BaHfO 3 coated conductors with 141 A/cm-w under 3 T at 77 K using the IBAD/PLD process,” Phys. C 504, 42–46 (2014). CrossRef T. Yoshida, A. Ibi, T. Takahashi, M. Yoshizumi, T. Izumi, and Y. Shiohara, “Fabrication of Eu 1Ba 2Cu 3O 7 – δ + BaHfO 3 coated conductors with 141 A/cm-w under 3 T at 77 K using the IBAD/PLD process,” Phys. C 504, 42–46 (2014). CrossRef
121.
Zurück zum Zitat B. Birajdar, V. Braccini, A. Tumino, T. Wenzel, O. Eibl, and G. Grasso, “MgB 2 multifilamentary tapes: microstructrure, chemical composition and supercoconducting properties,” Supercond. Sci. Technol. 19, 916 (2006). CrossRef B. Birajdar, V. Braccini, A. Tumino, T. Wenzel, O. Eibl, and G. Grasso, “MgB 2 multifilamentary tapes: microstructrure, chemical composition and supercoconducting properties,” Supercond. Sci. Technol. 19, 916 (2006). CrossRef
122.
Zurück zum Zitat S. Oha, J. H. Kim, Ch. Lee, H. Choi, C-J. Kim, S. X. Dou, M. Rindfleisch, and M. Tomsic, “Field, temperature and strain dependence of the critical current for multi-filamentary MgB 2 wire,” Phys. C 468, 1821–1824 (2008). CrossRef S. Oha, J. H. Kim, Ch. Lee, H. Choi, C-J. Kim, S. X. Dou, M. Rindfleisch, and M. Tomsic, “Field, temperature and strain dependence of the critical current for multi-filamentary MgB 2 wire,” Phys. C 468, 1821–1824 (2008). CrossRef
124.
Zurück zum Zitat L. Saglietti, E. Perini, G. Ripamonti, E. Bassani, G. Carcano, G. Giunchi, “Boron purity effects on structural properties of the MgB 2 obtained by Mg-reactive liquid infiltration,” IEEE Trans. Appl. Supercond. 19 (3), 2739–2743 (2009). CrossRef L. Saglietti, E. Perini, G. Ripamonti, E. Bassani, G. Carcano, G. Giunchi, “Boron purity effects on structural properties of the MgB 2 obtained by Mg-reactive liquid infiltration,” IEEE Trans. Appl. Supercond. 19 (3), 2739–2743 (2009). CrossRef
125.
Zurück zum Zitat X. Xu, J. H. Kim, W. Yeoh, Y. Zhang, S. X. Dou, “Improved J c of MgB 2 superconductor by ball milling using different media,” Supercond. Sci. Technol. 19 (11), 47–50 (2006). CrossRef X. Xu, J. H. Kim, W. Yeoh, Y. Zhang, S. X. Dou, “Improved J c of MgB 2 superconductor by ball milling using different media,” Supercond. Sci. Technol. 19 (11), 47–50 (2006). CrossRef
126.
Zurück zum Zitat J. H. Kim, S. Oh, H. Kumakura, A. Matsumoto, H. Yoon-Uk, S. Kyeongse, K. Yong Mook, M. Maeda, M. Rindfleisch, M. Tomsic, C. Seyong, and S. Dou, “Tailored materials for high-performance MgB 2 wire,” Adv. Mater. 23, 4942–4946 (2011). CrossRef J. H. Kim, S. Oh, H. Kumakura, A. Matsumoto, H. Yoon-Uk, S. Kyeongse, K. Yong Mook, M. Maeda, M. Rindfleisch, M. Tomsic, C. Seyong, and S. Dou, “Tailored materials for high-performance MgB 2 wire,” Adv. Mater. 23, 4942–4946 (2011). CrossRef
127.
Zurück zum Zitat J. V. Marzik, R. J. Suplinskas, R. H. T. Wike, P. Canfield, D. Finnemore, M. Rindfleisch, J. Margolies, and S. Hannahs, “Plasma synthesized doped B powders for MgB 2 superconductors,” Phys. C 423, 83–88 (2005). CrossRef J. V. Marzik, R. J. Suplinskas, R. H. T. Wike, P. Canfield, D. Finnemore, M. Rindfleisch, J. Margolies, and S. Hannahs, “Plasma synthesized doped B powders for MgB 2 superconductors,” Phys. C 423, 83–88 (2005). CrossRef
132.
Zurück zum Zitat A. Malagoli, V. Braccini, M. Tropeano, M. Vignolo, C. Bernini, C. Fanciulli, G. Romano, M. Putti, C. Ferdeghini, E. Mossang, A. Polyanskii, and D. C. Larbalestier, “Effect of grain refinement on enhancing critical current density and upper critical field in undoped MgB 2 ex-situ tapes,” J. Appl. Phys. 104, 103908 (2008). https://​doi.​org/​10.​1063/​1.​3021468 CrossRef A. Malagoli, V. Braccini, M. Tropeano, M. Vignolo, C. Bernini, C. Fanciulli, G. Romano, M. Putti, C. Ferdeghini, E. Mossang, A. Polyanskii, and D. C. Larbalestier, “Effect of grain refinement on enhancing critical current density and upper critical field in undoped MgB 2 ex-situ tapes,” J. Appl. Phys. 104, 103908 (2008). https://​doi.​org/​10.​1063/​1.​3021468 CrossRef
134.
Zurück zum Zitat J. Ma, A. Sun, G. Wei, L. Zheng, G. Yang, and X. Zhang, “Al-doping effects on the structural change of MgB 2,” J. Supercond. Nov. Magn. 23, 187–191 (2010). CrossRef J. Ma, A. Sun, G. Wei, L. Zheng, G. Yang, and X. Zhang, “Al-doping effects on the structural change of MgB 2,” J. Supercond. Nov. Magn. 23, 187–191 (2010). CrossRef
136.
137.
Zurück zum Zitat M. R. Cimberle, M. Novak, P. Manfrinetti, and A. Palenzona, “Magnetic characterization of sintered MgB 2 samples: effect of substitution or “doping” with Li, Al and Si,” Supercond. Sci. Technol. 15, 43–47 (2002). CrossRef M. R. Cimberle, M. Novak, P. Manfrinetti, and A. Palenzona, “Magnetic characterization of sintered MgB 2 samples: effect of substitution or “doping” with Li, Al and Si,” Supercond. Sci. Technol. 15, 43–47 (2002). CrossRef
138.
Zurück zum Zitat M. Kuhberger and G. Gritzner, “Effects of Sn, Co and Fe on MgB,” Phys. C 370, 39–43 (2002). CrossRef M. Kuhberger and G. Gritzner, “Effects of Sn, Co and Fe on MgB,” Phys. C 370, 39–43 (2002). CrossRef
139.
Zurück zum Zitat C. Kea, C. H. Chengb, Y. Yanga, Y. Zhang, W. T. Wang, and Y. Zhao, “Flux pinning behavior of MgB 2 doped with Fe and Fe 2O 3 nanowires,” Phys. Proc. 27, 40–43 (2012). CrossRef C. Kea, C. H. Chengb, Y. Yanga, Y. Zhang, W. T. Wang, and Y. Zhao, “Flux pinning behavior of MgB 2 doped with Fe and Fe 2O 3 nanowires,” Phys. Proc. 27, 40–43 (2012). CrossRef
141.
Zurück zum Zitat J. Dyson, D. Rinaldi, G. Barucca, G. Albertini, S. Sprio, and A. Tampieri, “Flux pinning in Y- and Ag-doped MgB 2,” Adv. Mater. Phys. Chem. 5, 426–438 (2015). CrossRef J. Dyson, D. Rinaldi, G. Barucca, G. Albertini, S. Sprio, and A. Tampieri, “Flux pinning in Y- and Ag-doped MgB 2,” Adv. Mater. Phys. Chem. 5, 426–438 (2015). CrossRef
142.
Zurück zum Zitat D. Batalu, Gh. Aldica, M. Burdusel, and P. Badica, “Short review on rare earth and metalloid oxide additions to MgB 2 as a candidate superconducting material for medical applications,” Key Eng. Mater. 638, 357–362 (2015). CrossRef D. Batalu, Gh. Aldica, M. Burdusel, and P. Badica, “Short review on rare earth and metalloid oxide additions to MgB 2 as a candidate superconducting material for medical applications,” Key Eng. Mater. 638, 357–362 (2015). CrossRef
143.
Zurück zum Zitat A. Agostino, M. Panetta, P. Volpe, M. Truccato, S. Cagliero, L. Gozzelino, R. Gerbaldo, G. Ghigo, F. Laviano, G. Lopardo, and B. Minetti, “Na substitution effects on MgB 2 synthesized with a microwave-assisted technique,” IEEE Trans. Appl. Supercond. 17 (2), 2774–2777 (2007). CrossRef A. Agostino, M. Panetta, P. Volpe, M. Truccato, S. Cagliero, L. Gozzelino, R. Gerbaldo, G. Ghigo, F. Laviano, G. Lopardo, and B. Minetti, “Na substitution effects on MgB 2 synthesized with a microwave-assisted technique,” IEEE Trans. Appl. Supercond. 17 (2), 2774–2777 (2007). CrossRef
145.
Zurück zum Zitat W. X. Li, Y. Li, M. Y. Zhu, R. Chen, X. Xu, W. Yeoh, J. Kim, and S. Dou, “Benzoic acid doping to enhance electromagnetic properties of MgB 2 superconductors,” IEEE Trans. Appl. Supercond. 17 (2), 2778–2781 (2007). CrossRef W. X. Li, Y. Li, M. Y. Zhu, R. Chen, X. Xu, W. Yeoh, J. Kim, and S. Dou, “Benzoic acid doping to enhance electromagnetic properties of MgB 2 superconductors,” IEEE Trans. Appl. Supercond. 17 (2), 2778–2781 (2007). CrossRef
146.
Zurück zum Zitat X. Zhang, Y. Ma, Zh. Gao, D. Wang, S. Awaji, G. Nishijima, and K. Watanabe, “Effect of nano-C doping on the critical current density and flux pinning of MgB 2 tapes,” IEEE Trans. Appl. Supercond. 17 (2), 2915–2918 (2007). CrossRef X. Zhang, Y. Ma, Zh. Gao, D. Wang, S. Awaji, G. Nishijima, and K. Watanabe, “Effect of nano-C doping on the critical current density and flux pinning of MgB 2 tapes,” IEEE Trans. Appl. Supercond. 17 (2), 2915–2918 (2007). CrossRef
147.
Zurück zum Zitat J. H. Lim, C. M. Lee, K. Won Seog, J. Joo, J. Seung-Boo, L. Young Hee, and K. Chan-Joong, “Fabrication and characterization of the MgB 2 bulk superconductors doped by carbon nanotubes,” IEEE Trans. Appl. Supercond. 19 (3), 2767–2770 (2009). CrossRef J. H. Lim, C. M. Lee, K. Won Seog, J. Joo, J. Seung-Boo, L. Young Hee, and K. Chan-Joong, “Fabrication and characterization of the MgB 2 bulk superconductors doped by carbon nanotubes,” IEEE Trans. Appl. Supercond. 19 (3), 2767–2770 (2009). CrossRef
148.
Zurück zum Zitat J. H. Kim, W. K. Yeoh, X. Xu, D. Shi, and S. Dou, “Improvement of upper critical field and critical current density in single walled CNT doped MgB 2Fe wires,” IEEE Trans. Appl. Supercond. 17 (2), 2907–2910 (2007). CrossRef J. H. Kim, W. K. Yeoh, X. Xu, D. Shi, and S. Dou, “Improvement of upper critical field and critical current density in single walled CNT doped MgB 2Fe wires,” IEEE Trans. Appl. Supercond. 17 (2), 2907–2910 (2007). CrossRef
149.
Zurück zum Zitat K. S. B. De Silva, X. Xu, W. X. Li, Y. Zhang, M. Rindfleisch, and M. Tomsic, “Improving superconducting properties of MgB 2 by graphene doping,” IEEE Trans. Appl. Supercond. 21 (3), 2686–2689 (2011). CrossRef K. S. B. De Silva, X. Xu, W. X. Li, Y. Zhang, M. Rindfleisch, and M. Tomsic, “Improving superconducting properties of MgB 2 by graphene doping,” IEEE Trans. Appl. Supercond. 21 (3), 2686–2689 (2011). CrossRef
150.
Zurück zum Zitat J. M. Parakkandy, M. Shahabuddin, M. Sh. Shah, N. Alzayed, S. A. S. Qaid, N. A. Madhar, S. Ramay, and M. A. Shar, “Effects of glucose doping on the MgB 2 superconductors using cheap crystalline boron,” Phys. C 519, 137–141 (2015). CrossRef J. M. Parakkandy, M. Shahabuddin, M. Sh. Shah, N. Alzayed, S. A. S. Qaid, N. A. Madhar, S. Ramay, and M. A. Shar, “Effects of glucose doping on the MgB 2 superconductors using cheap crystalline boron,” Phys. C 519, 137–141 (2015). CrossRef
151.
Zurück zum Zitat H. Ağıl, E. Aksu, and G. Ali, “Role of aniline addition in structural and superconducting properties of MgB 2 bulk superconductor,” J. Supercond. Nov. Magn. 30, 2735–2740 (2017). CrossRef H. Ağıl, E. Aksu, and G. Ali, “Role of aniline addition in structural and superconducting properties of MgB 2 bulk superconductor,” J. Supercond. Nov. Magn. 30, 2735–2740 (2017). CrossRef
152.
Zurück zum Zitat S. Okur, M. Kalkanci, M. Yavas, M. Egilmez, L. Ozyuzer, “Microstructural and electrical characterization of Ti and Mg doped Cu-clad MgB 2 superconducting wires,” J. Optoelectron. Adv. Mater. 7, 411–414 (2005). S. Okur, M. Kalkanci, M. Yavas, M. Egilmez, L. Ozyuzer, “Microstructural and electrical characterization of Ti and Mg doped Cu-clad MgB 2 superconducting wires,” J. Optoelectron. Adv. Mater. 7, 411–414 (2005).
153.
Zurück zum Zitat Y. Yamada, M. Nakatsuka, and Y. Kato, “Superconducting properties of in situ PIT MgB 2 tapes with different ceramic powder,” International cryogenic materials conference—ICMC (2006), pp. 631–638. Y. Yamada, M. Nakatsuka, and Y. Kato, “Superconducting properties of in situ PIT MgB 2 tapes with different ceramic powder,” International cryogenic materials conference—ICMC (2006), pp. 631–638.
154.
Zurück zum Zitat S. X. Dou, J. Horvat, S. Soltanian, X. L. Wang, M. Qin, Z. Shifang, H. Liu, and P. Munroe, “Transport critical current density in Fe-sheathed nano-SiC doped MgB 2 wires,” IEEE Trans. Appl. Supercond. 13, 3199–3202 (2002). CrossRef S. X. Dou, J. Horvat, S. Soltanian, X. L. Wang, M. Qin, Z. Shifang, H. Liu, and P. Munroe, “Transport critical current density in Fe-sheathed nano-SiC doped MgB 2 wires,” IEEE Trans. Appl. Supercond. 13, 3199–3202 (2002). CrossRef
155.
Zurück zum Zitat J.-C. Grivel, A. Pitillas, S. Namazkar, A. Alexiou, and O. J. Holte, “Preparation and characterization of MgB 2 with Pd, Pt and Re doping,” Phys. C 520, 37–41 (2016). CrossRef J.-C. Grivel, A. Pitillas, S. Namazkar, A. Alexiou, and O. J. Holte, “Preparation and characterization of MgB 2 with Pd, Pt and Re doping,” Phys. C 520, 37–41 (2016). CrossRef
160.
Zurück zum Zitat H. Fujii, H. Kumakura, and K. Togano, “Influence of MgB 2 powder quality on the transport properties of Cu-sheathed MgB 2 tapes,” Phys. C 363, 237–242 (2001). CrossRef H. Fujii, H. Kumakura, and K. Togano, “Influence of MgB 2 powder quality on the transport properties of Cu-sheathed MgB 2 tapes,” Phys. C 363, 237–242 (2001). CrossRef
162.
Zurück zum Zitat S. Jln, H. Mavoorl, and C. Bover, “High critical currents in iron-clad superconducting MgB 2 wires,” Nature 411, 563–562 (2001). CrossRef S. Jln, H. Mavoorl, and C. Bover, “High critical currents in iron-clad superconducting MgB 2 wires,” Nature 411, 563–562 (2001). CrossRef
163.
Zurück zum Zitat I. Hušek, P. Kováč, T. Melišek, and L. Kopera, “Thermally stabilized MgB 2 composite wires with different barriers,” Cryogenics 51, 550–554 (2011). CrossRef I. Hušek, P. Kováč, T. Melišek, and L. Kopera, “Thermally stabilized MgB 2 composite wires with different barriers,” Cryogenics 51, 550–554 (2011). CrossRef
167.
Zurück zum Zitat E. I. Kuznetsova, S. V. Sudareva, T. P. Krinitsina, Yu. V. Blinova, E. P. Romanov, Yu. N. Akshentsev, M. V. Degtyarev, M. A. Tikhonovskii, and I. F. Kislyak, “Mechanism of the formation and specific features of the structure of massive samples of compound MgB 2,” Phys. Met. Metallogr. 115 (2), 175–185 (2014). CrossRef E. I. Kuznetsova, S. V. Sudareva, T. P. Krinitsina, Yu. V. Blinova, E. P. Romanov, Yu. N. Akshentsev, M. V. Degtyarev, M. A. Tikhonovskii, and I. F. Kislyak, “Mechanism of the formation and specific features of the structure of massive samples of compound MgB 2,” Phys. Met. Metallogr. 115 (2), 175–185 (2014). CrossRef
168.
Zurück zum Zitat T. P. Krinitsina, E. I. Kuznetsova, Yu. V. Blinova, D. N. Rakov, Yu. N. Belotelova, S. V. Sudareva, M. V. Degtyarev, and E. P. Romanov, “Structure and stability of superconducting core of single-core MgB 2/Cu,Nb tube composite with a high critical current,” Phys. Met. Metallogr. 115 (6), 538–546 (2014). CrossRef T. P. Krinitsina, E. I. Kuznetsova, Yu. V. Blinova, D. N. Rakov, Yu. N. Belotelova, S. V. Sudareva, M. V. Degtyarev, and E. P. Romanov, “Structure and stability of superconducting core of single-core MgB 2/Cu,Nb tube composite with a high critical current,” Phys. Met. Metallogr. 115 (6), 538–546 (2014). CrossRef
169.
Zurück zum Zitat I. M. Abdyukhanov, A. S. Tsapleva, M. V. Alekseev, and E. A. Zubok, “Heat treatment of MgB 2 superconductors with different metal sheaths,” IEEE Trans. Appl. Supercond. 28 (3), 6200504 (2018). CrossRef I. M. Abdyukhanov, A. S. Tsapleva, M. V. Alekseev, and E. A. Zubok, “Heat treatment of MgB 2 superconductors with different metal sheaths,” IEEE Trans. Appl. Supercond. 28 (3), 6200504 (2018). CrossRef
170.
Zurück zum Zitat I. M. Abdyukhanov, A. S. Tsapleva, A. V. Borisov, O. A. Krymskaya, M. G. Isaenkova, and D. K. Figu-rovskii, “Effect of synthesis conditions on the structure and phase composition of magnesium diboride,” Inorg. Mater.: Appl. Res. 10, 162–167 (2019). CrossRef I. M. Abdyukhanov, A. S. Tsapleva, A. V. Borisov, O. A. Krymskaya, M. G. Isaenkova, and D. K. Figu-rovskii, “Effect of synthesis conditions on the structure and phase composition of magnesium diboride,” Inorg. Mater.: Appl. Res. 10, 162–167 (2019). CrossRef
171.
Zurück zum Zitat I. Abduykhanov, A. Tsapleva, K. Bazaleeva, P. Lykya-nov, M. Alekseev, and A. Potanin, “Microstructure and properties MgB 2 superconductors after heat treatment,” IOP Conf. Series: J. Phys.: Conf. Ser. 1134, 012062 (2018). I. Abduykhanov, A. Tsapleva, K. Bazaleeva, P. Lykya-nov, M. Alekseev, and A. Potanin, “Microstructure and properties MgB 2 superconductors after heat treatment,” IOP Conf. Series: J. Phys.: Conf. Ser. 1134, 012062 (2018).
172.
Zurück zum Zitat Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-based layered superconductor La[O 1 – xF x]FeAs ( x = 0.05–0.12) with Tc = 26 K,” J. Am. Chem. Soc. 130 (11), 3296-7 (2008). CrossRef Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-based layered superconductor La[O 1 – xF x]FeAs ( x = 0.05–0.12) with Tc = 26 K,” J. Am. Chem. Soc. 130 (11), 3296-7 (2008). CrossRef
173.
Zurück zum Zitat C. W. Chu, F. Chen, M. Gooch, A. M. Guloy, B. Lv, B. Lorenz, K. Sasmal, Z. J. Tang, J. H. Tapp, and Y. Y. Xue, “The synthesis and characterization of LiFeAs and NaFeAs,” Phys. C 469 (9–12), 326–331 (2009). CrossRef C. W. Chu, F. Chen, M. Gooch, A. M. Guloy, B. Lv, B. Lorenz, K. Sasmal, Z. J. Tang, J. H. Tapp, and Y. Y. Xue, “The synthesis and characterization of LiFeAs and NaFeAs,” Phys. C 469 (9–12), 326–331 (2009). CrossRef
174.
Zurück zum Zitat Z. Deng, X. C. Wang, Q. Q. Liu, S. J. Zhang, Y. X. Lv, J. L. Zhu, R. C. Yu, and C. Q. Jin, “A new “111” type iron pnictide superconductor LiFeP,” Europhys. Lett. 87 (3), 37004 (2009). CrossRef Z. Deng, X. C. Wang, Q. Q. Liu, S. J. Zhang, Y. X. Lv, J. L. Zhu, R. C. Yu, and C. Q. Jin, “A new “111” type iron pnictide superconductor LiFeP,” Europhys. Lett. 87 (3), 37004 (2009). CrossRef
175.
Zurück zum Zitat G. Just and P. Paufler, “On the coordination of ThCr 2Si 2 (BaAl 4)-type compounds within the field of free parameters,” J. Alloys Compd. 232 (1–2), 1–25 (1996). CrossRef G. Just and P. Paufler, “On the coordination of ThCr 2Si 2 (BaAl 4)-type compounds within the field of free parameters,” J. Alloys Compd. 232 (1–2), 1–25 (1996). CrossRef
176.
Zurück zum Zitat E. Dagotto, “Colloquium: the unexpected properties of alkali metal iron selenide superconductors,” Rev. Mod. Phys. 85 (2), 849 (2013). CrossRef E. Dagotto, “Colloquium: the unexpected properties of alkali metal iron selenide superconductors,” Rev. Mod. Phys. 85 (2), 849 (2013). CrossRef
177.
Zurück zum Zitat P. Cheng, B. Shen, G. Mu, X. Y. Zhu, F. Han, B. Zeng, and H. H. Wen, “High T c superconductivity induced by doping rare-earth elements into CaFeAsF,” Europhys. Lett. 85 (6), 67003 (2009). CrossRef P. Cheng, B. Shen, G. Mu, X. Y. Zhu, F. Han, B. Zeng, and H. H. Wen, “High T c superconductivity induced by doping rare-earth elements into CaFeAsF,” Europhys. Lett. 85 (6), 67003 (2009). CrossRef
178.
Zurück zum Zitat A. Iyo, K. Kawashima, T. Kinjo, T. Nishio, S. Ishida, H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, and Y. Yoshida, “New-Structure-type Fe-based superconductors: CaAFe 4As 4 (A = K, Rb, Cs) and SrAFe 4As 4 (A = Rb, Cs),” J. Am. Chem. Soc. 138 (10), 3410–3415 (2016). CrossRef A. Iyo, K. Kawashima, T. Kinjo, T. Nishio, S. Ishida, H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, and Y. Yoshida, “New-Structure-type Fe-based superconductors: CaAFe 4As 4 (A = K, Rb, Cs) and SrAFe 4As 4 (A = Rb, Cs),” J. Am. Chem. Soc. 138 (10), 3410–3415 (2016). CrossRef
179.
Zurück zum Zitat M. V. Roslova, Doctoral Dissertation (Moscow, 2014). M. V. Roslova, Doctoral Dissertation (Moscow, 2014).
182.
Zurück zum Zitat D. Contarino, C. Lohnert, D. Johrendt, A. Genovese, C. Bernini, A. Malagoli, and M. Putti, “Development and characterization of P-doped Ba-122 superconducting tapes,” IEEE Trans. Appl. Supercond. 27 (4), 7300504 (2017). CrossRef D. Contarino, C. Lohnert, D. Johrendt, A. Genovese, C. Bernini, A. Malagoli, and M. Putti, “Development and characterization of P-doped Ba-122 superconducting tapes,” IEEE Trans. Appl. Supercond. 27 (4), 7300504 (2017). CrossRef
183.
Zurück zum Zitat X. Zhang, L. Wang, Y. Qi, D. Wang, Zh. Gao, Zh. Zhang, and Y. Ma, “Effect of sheath materials on the microstructure and superconducting properties of SmO 0.7F 0.3FeAs wires,” Phys. C 470, 104–108 (2010). CrossRef X. Zhang, L. Wang, Y. Qi, D. Wang, Zh. Gao, Zh. Zhang, and Y. Ma, “Effect of sheath materials on the microstructure and superconducting properties of SmO 0.7F 0.3FeAs wires,” Phys. C 470, 104–108 (2010). CrossRef
184.
Zurück zum Zitat Y. Ma, Zh. Gao, Y. Qi, X. Zhang, L. Wang, Zh. Zhang, and D. Wang, “Fabrication and characterization of iron pnictide wires and bulk materials through the powder-in-tube method,” Phys. C 469, 651–656 (2009). CrossRef Y. Ma, Zh. Gao, Y. Qi, X. Zhang, L. Wang, Zh. Zhang, and D. Wang, “Fabrication and characterization of iron pnictide wires and bulk materials through the powder-in-tube method,” Phys. C 469, 651–656 (2009). CrossRef
185.
Zurück zum Zitat Y. Ma, Wang. Lei, Y. Qi, Zh. Gao, D. Wang, and X. Zhang, “Development of powder-in-tube processed iron pnictide wires and tapes,” IEEE Trans. Appl. Supercond. 21 (3), 2878–2881 (2011). CrossRef Y. Ma, Wang. Lei, Y. Qi, Zh. Gao, D. Wang, and X. Zhang, “Development of powder-in-tube processed iron pnictide wires and tapes,” IEEE Trans. Appl. Supercond. 21 (3), 2878–2881 (2011). CrossRef
189.
Zurück zum Zitat Q. Dong, B. Tian, W. Hong, Y. Ma, and Y. Xin, “Critical currents of 100-m class Ag-sheathed Sr 0.6K 0.4Fe 2As 2 tape under various temperatures,” Magn. Fields, and Angles, IEEE Trans. Appl. Supercond. 29 (5), 7300705 (2019). CrossRef Q. Dong, B. Tian, W. Hong, Y. Ma, and Y. Xin, “Critical currents of 100-m class Ag-sheathed Sr 0.6K 0.4Fe 2As 2 tape under various temperatures,” Magn. Fields, and Angles, IEEE Trans. Appl. Supercond. 29 (5), 7300705 (2019). CrossRef
190.
Zurück zum Zitat Ch. Yao, H. Lin, Q. Zhang, X. Zhang, D. Wang, Ch. Dong, Y. Ma, S. Awaji, and K. Watanabe, “Critical current density and microstructure of iron sheathed multifilamentary Sr 1 – xK xFe 2As 2/Ag composite conductors,” J. Appl. Phys. 118, 203909 (2015). https://​doi.​org/​10.​1063/​1.​4936370 Ch. Yao, H. Lin, Q. Zhang, X. Zhang, D. Wang, Ch. Dong, Y. Ma, S. Awaji, and K. Watanabe, “Critical current density and microstructure of iron sheathed multifilamentary Sr 1 – xK xFe 2As 2/Ag composite conductors,” J. Appl. Phys. 118, 203909 (2015). https://​doi.​org/​10.​1063/​1.​4936370
196.
201.
Zurück zum Zitat V. A. Vlasenko, O. A. Sobolevskii, A. V. Sadakov, K. S. Pervakov, S. Yu. Gavrilkin, A. V. Dik, and Yu. F. El’tsev, “Systematic study of the pinning of Abrikosov vortices and the vortex liquid–glass phase transition in single crystals BaFe 2 – xNi xAs,” Pis’ma Zh. Eksp. Teor. Fiz. 107, 121–127 (2018). V. A. Vlasenko, O. A. Sobolevskii, A. V. Sadakov, K. S. Pervakov, S. Yu. Gavrilkin, A. V. Dik, and Yu. F. El’tsev, “Systematic study of the pinning of Abrikosov vortices and the vortex liquid–glass phase transition in single crystals BaFe 2 – xNi xAs,” Pis’ma Zh. Eksp. Teor. Fiz. 107, 121–127 (2018).
202.
Zurück zum Zitat Yu. F. Eltsev, K. S. Pervakov, V. A. Vlasenko, S. Yu. Gavrilkin, E. P. Khlybov, and V. M. Pudalov, “Magnetic and transport properties of single crystals of Fe-based superconductors of the 122 family,” Phys.-Usp. 57, 827 (2014). CrossRef Yu. F. Eltsev, K. S. Pervakov, V. A. Vlasenko, S. Yu. Gavrilkin, E. P. Khlybov, and V. M. Pudalov, “Magnetic and transport properties of single crystals of Fe-based superconductors of the 122 family,” Phys.-Usp. 57, 827 (2014). CrossRef
205.
207.
208.
Zurück zum Zitat W. Si, J. Zhou, Q. Jie, I. Dimitrov, V. Solovyov, P. D. Johnston, J. Jaroszynski, V. Matias, C. Sheehan, and Q. Li, “Iron-chalcogenide FeSe 0.5Te 0.5 coated superconducting tapes for high field applications,” Appl. Phys. Lett. 98, 262509 (2011). CrossRef W. Si, J. Zhou, Q. Jie, I. Dimitrov, V. Solovyov, P. D. Johnston, J. Jaroszynski, V. Matias, C. Sheehan, and Q. Li, “Iron-chalcogenide FeSe 0.5Te 0.5 coated superconducting tapes for high field applications,” Appl. Phys. Lett. 98, 262509 (2011). CrossRef
210.
Zurück zum Zitat V. Braccini, A. Leo, E. Bellingeri, C. Ferdeghini, A. Galluzzi, M. Polichetti, A. Nigro, S. Pace, and G. Grimaldi, “Anisotropy effects on the quenching current of Fe(Se,Te) thin films,” IEEE Trans. Appl. Supercond. 28 (4), 7300204 (2018). V. Braccini, A. Leo, E. Bellingeri, C. Ferdeghini, A. Galluzzi, M. Polichetti, A. Nigro, S. Pace, and G. Grimaldi, “Anisotropy effects on the quenching current of Fe(Se,Te) thin films,” IEEE Trans. Appl. Supercond. 28 (4), 7300204 (2018).
211.
Zurück zum Zitat K. Iida, J. Hanisch, S. Trommler, V. Matias, S. Haindl, F. Kurth, I. L. del Pozo, R. Huhne, M. Kidszun, J. Engelmann, L. Schultz, and B. Holzapfel, “Epitaxial growth of superconducting Ba(Fe 1 – xCo x) 2As 2 thin films on technical ion beam assisted deposition MgO substrates,” Appl. Phys. Exp. 4, 013103 (2011). https://​doi.​org/​10.​1143/​APEX.​4.​013103 CrossRef K. Iida, J. Hanisch, S. Trommler, V. Matias, S. Haindl, F. Kurth, I. L. del Pozo, R. Huhne, M. Kidszun, J. Engelmann, L. Schultz, and B. Holzapfel, “Epitaxial growth of superconducting Ba(Fe 1 – xCo x) 2As 2 thin films on technical ion beam assisted deposition MgO substrates,” Appl. Phys. Exp. 4, 013103 (2011). https://​doi.​org/​10.​1143/​APEX.​4.​013103 CrossRef
213.
Zurück zum Zitat T. Katase, H. Hiramatsu, V. Matias, C. Sheehan, Y. Ishimaru, T. Kamiya, K. Tanabe, and H. Hosono, “Biaxially textured cobal-doped BaFe 2As 2 films with high critical current density over 1 MA/cm 2 on MgO-buffered metal-tape flexible substrates,” Appl. Phys. Lett. 98 (4), 242510 (2011). https://​doi.​org/​10.​1063/​1.​3599844 CrossRef T. Katase, H. Hiramatsu, V. Matias, C. Sheehan, Y. Ishimaru, T. Kamiya, K. Tanabe, and H. Hosono, “Biaxially textured cobal-doped BaFe 2As 2 films with high critical current density over 1 MA/cm 2 on MgO-buffered metal-tape flexible substrates,” Appl. Phys. Lett. 98 (4), 242510 (2011). https://​doi.​org/​10.​1063/​1.​3599844 CrossRef
220.
Zurück zum Zitat X. Qingjin, “High field superconducting magnet program for accelerators in China,” 10th International particle Accelerator conference (Melbourne, 2019). X. Qingjin, “High field superconducting magnet program for accelerators in China,” 10th International particle Accelerator conference (Melbourne, 2019).
221.
Zurück zum Zitat D. C. Larbalestier, A. W. West, W. Starch, W. Warnes, P. Lee, W. K. McDonald, P. O’Larey, K. Hemachalam, B. Zeitlin, R. Scanlan, and C. Taylor, “High critical current densities in industrial scale composites made from high homogeneity Nb 46.5T,” IEEE Trans. Mag. 21, 269–272 (1985). CrossRef D. C. Larbalestier, A. W. West, W. Starch, W. Warnes, P. Lee, W. K. McDonald, P. O’Larey, K. Hemachalam, B. Zeitlin, R. Scanlan, and C. Taylor, “High critical current densities in industrial scale composites made from high homogeneity Nb 46.5T,” IEEE Trans. Mag. 21, 269–272 (1985). CrossRef
222.
Zurück zum Zitat D. C. Larbalestier and A. W. West, “New perspectives on flux pinning in Niobium-Titanium composite superconductors,” Acta Metall. 32, 1871–1881 (1984). CrossRef D. C. Larbalestier and A. W. West, “New perspectives on flux pinning in Niobium-Titanium composite superconductors,” Acta Metall. 32, 1871–1881 (1984). CrossRef
223.
Zurück zum Zitat J. D. McCambridge, N. D. Rizzo, X. S. Ling, J. Q. Wang, D. E. Prober, L. R. Motowidlo, and B. A. Zeitlin, “Flux pinning in NbTi/Nb multilayers,” IEEE Trans. Appl. Supercond. 5, 1697–1699 (1995). CrossRef J. D. McCambridge, N. D. Rizzo, X. S. Ling, J. Q. Wang, D. E. Prober, L. R. Motowidlo, and B. A. Zeitlin, “Flux pinning in NbTi/Nb multilayers,” IEEE Trans. Appl. Supercond. 5, 1697–1699 (1995). CrossRef
224.
Zurück zum Zitat P-J. Lee, “Superconductor: Wwires and cables: materials and processes,” in Encyclopedia of Materials: Science and Technology (Elseiver, Amsterdam, 2003). P-J. Lee, “Superconductor: Wwires and cables: materials and processes,” in Encyclopedia of Materials: Science and Technology (Elseiver, Amsterdam, 2003).
Metadaten
Titel
The Materials Science of Modern Technical Superconducting Materials
verfasst von
A. S. Tsapleva
I. M. Abdyukhanov
V. I. Pantsyrnyi
M. V. Alekseev
D. N. Rakov
Publikationsdatum
01.09.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 9/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22090125

Weitere Artikel der Ausgabe 9/2022

Physics of Metals and Metallography 9/2022 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Fine Structure of MgB2 Alloyed with Y and Gd