Skip to main content
Erschienen in: Journal of Computational Electronics 2/2019

01.02.2019

The maximum rectification ratio of pyrene-based molecular devices: a systematic study

verfasst von: M. Farid Jamali, H. Rahimpour Soleimani, M. Bagheri Tagani

Erschienen in: Journal of Computational Electronics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We apply the NEGF + DFT technique to study the effect of anchoring groups on the electronic transport properties of a single pyrene molecule attached to two Au electrodes via three different anchoring groups (namely NO2, NH2 and CN). More specifically, we investigate the effect of asymmetric electrode coupling together with B and N doping on rectification ratio of a pyrene-based molecular device. The results indicate that the rectification ratio can be tuned by selecting configurations of maximum difference in the coupling parameters in the two sides of the gold electrodes, and its magnitude depends on the strength of the electronic coupling of the pyrene molecule to the gold electrodes. In addition, we observe that doping the molecule with B and N atoms decreases the coupling parameters by creating a resonant peak close to the Fermi level.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aviram, A., Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29(2), 277–283 (1974)CrossRef Aviram, A., Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29(2), 277–283 (1974)CrossRef
2.
Zurück zum Zitat Tsutsui, M., Teramae, Y., Kurokawa, S., Sakai, A.: High-conductance states of single benzenedithiol molecules. Appl. Phys. Lett. 89(16), 163111 (2006)CrossRef Tsutsui, M., Teramae, Y., Kurokawa, S., Sakai, A.: High-conductance states of single benzenedithiol molecules. Appl. Phys. Lett. 89(16), 163111 (2006)CrossRef
3.
Zurück zum Zitat Néel, N., Kröger, J., Limot, L., Berndt, R.: Conductance of oriented C60 molecules. Nano Lett. 8(5), 1291–1295 (2008)CrossRef Néel, N., Kröger, J., Limot, L., Berndt, R.: Conductance of oriented C60 molecules. Nano Lett. 8(5), 1291–1295 (2008)CrossRef
4.
Zurück zum Zitat Mishchenko, A., Zotti, L.A., Vonlanthen, D., Bürkle, M., Pauly, F., Cuevas, J.C., Wandlowski, T.: Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133(2), 184–187 (2010)CrossRef Mishchenko, A., Zotti, L.A., Vonlanthen, D., Bürkle, M., Pauly, F., Cuevas, J.C., Wandlowski, T.: Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133(2), 184–187 (2010)CrossRef
5.
Zurück zum Zitat Chiechi, R.C., Weiss, E.A., Dickey, M.D., Whitesides, G.M.: Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. 120(1), 148–150 (2008)CrossRef Chiechi, R.C., Weiss, E.A., Dickey, M.D., Whitesides, G.M.: Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. 120(1), 148–150 (2008)CrossRef
6.
Zurück zum Zitat Temirov, R., Lassise, A., Anders, F.B., Tautz, F.S.: Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology 19(6), 065401 (2008)CrossRef Temirov, R., Lassise, A., Anders, F.B., Tautz, F.S.: Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology 19(6), 065401 (2008)CrossRef
7.
Zurück zum Zitat An, Y.P., Yang, Z., Ratner, M.A.: High-efficiency switching effect in porphyrin-ethyne-benzene conjugates. J. Chem. Phys. 135(4), 044706 (2011)CrossRef An, Y.P., Yang, Z., Ratner, M.A.: High-efficiency switching effect in porphyrin-ethyne-benzene conjugates. J. Chem. Phys. 135(4), 044706 (2011)CrossRef
8.
Zurück zum Zitat Fan, Z.Q., Zhang, Z.H., Qiu, M., Tang, G.P.: Rectifying performance and reversible conductance switching of single-polyaniline devices. Phys. Lett. A 375(37), 3314–3318 (2011)CrossRef Fan, Z.Q., Zhang, Z.H., Qiu, M., Tang, G.P.: Rectifying performance and reversible conductance switching of single-polyaniline devices. Phys. Lett. A 375(37), 3314–3318 (2011)CrossRef
9.
Zurück zum Zitat Min, Y., Yao, K.L., Fu, H.H., Liu, Z.L., Li, Q.: First-principles study of strong rectification and negative differential resistance induced by charge distribution in single molecule. J. Chem. Phys. 132(21), 214703 (2010)CrossRef Min, Y., Yao, K.L., Fu, H.H., Liu, Z.L., Li, Q.: First-principles study of strong rectification and negative differential resistance induced by charge distribution in single molecule. J. Chem. Phys. 132(21), 214703 (2010)CrossRef
10.
Zurück zum Zitat Fan, Z.Q., Chen, K.Q.: Negative differential resistance and rectifying behaviors in phenalenyl molecular device with different contact geometries. Appl. Phys. Lett. 96(5), 053509 (2010)CrossRef Fan, Z.Q., Chen, K.Q.: Negative differential resistance and rectifying behaviors in phenalenyl molecular device with different contact geometries. Appl. Phys. Lett. 96(5), 053509 (2010)CrossRef
11.
Zurück zum Zitat Saffarzadeh, A., Farghadan, R.: A spin-filter device based on armchair graphene nanoribbons. Appl. Phys. Lett. 98(2), 023106 (2011)CrossRef Saffarzadeh, A., Farghadan, R.: A spin-filter device based on armchair graphene nanoribbons. Appl. Phys. Lett. 98(2), 023106 (2011)CrossRef
12.
Zurück zum Zitat Zhu, L., Yao, K.L., Liu, Z.L.: Molecular spin valve and spin filter composed of single-molecule magnets. Appl. Phys. Lett. 96(8), 082115 (2010)CrossRef Zhu, L., Yao, K.L., Liu, Z.L.: Molecular spin valve and spin filter composed of single-molecule magnets. Appl. Phys. Lett. 96(8), 082115 (2010)CrossRef
13.
Zurück zum Zitat Ren, Y., Chen, K.Q., Wan, Q., Zou, B.S., Zhang, Y.: Transitions between semiconductor and metal induced by mixed deformation in carbon nanotube devices. Appl. Phys. Lett. 94(18), 183506 (2009)CrossRef Ren, Y., Chen, K.Q., Wan, Q., Zou, B.S., Zhang, Y.: Transitions between semiconductor and metal induced by mixed deformation in carbon nanotube devices. Appl. Phys. Lett. 94(18), 183506 (2009)CrossRef
14.
Zurück zum Zitat An, Y., Yang, Z.: Abnormal electronic transport and negative differential resistance of graphene nanoribbons with defects. Appl. Phys. Lett. 99(19), 192102 (2011)CrossRef An, Y., Yang, Z.: Abnormal electronic transport and negative differential resistance of graphene nanoribbons with defects. Appl. Phys. Lett. 99(19), 192102 (2011)CrossRef
15.
Zurück zum Zitat Long, M.Q., Chen, K.Q., Wang, L., Qing, W., Zou, B.S., Shuai, Z.: Negative differential resistance behaviors in porphyrin molecular junctions modulated with side groups. Appl. Phys. Lett. 92(24), 215 (2008)CrossRef Long, M.Q., Chen, K.Q., Wang, L., Qing, W., Zou, B.S., Shuai, Z.: Negative differential resistance behaviors in porphyrin molecular junctions modulated with side groups. Appl. Phys. Lett. 92(24), 215 (2008)CrossRef
16.
Zurück zum Zitat Pan, H., Zhang, Y.W., Shenoy, V.B., Gao, H.: Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2. J. Phys. Chem. C 115(24), 12224–12231 (2011)CrossRef Pan, H., Zhang, Y.W., Shenoy, V.B., Gao, H.: Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2. J. Phys. Chem. C 115(24), 12224–12231 (2011)CrossRef
17.
Zurück zum Zitat Müller, K.H.: Effect of the atomic configuration of gold electrodes on the electrical conduction of alkanedithiol molecules. Phys. Rev. B 73(4), 045403 (2006)CrossRef Müller, K.H.: Effect of the atomic configuration of gold electrodes on the electrical conduction of alkanedithiol molecules. Phys. Rev. B 73(4), 045403 (2006)CrossRef
18.
Zurück zum Zitat Hu, Y., Zhu, Y., Gao, H., Guo, H.: Conductance of an ensemble of molecular wires: a statistical analysis. Phys. Rev. Lett. 95(15), 156803 (2005)CrossRef Hu, Y., Zhu, Y., Gao, H., Guo, H.: Conductance of an ensemble of molecular wires: a statistical analysis. Phys. Rev. Lett. 95(15), 156803 (2005)CrossRef
19.
Zurück zum Zitat Basch, H., Cohen, R., Ratner, M.A.: Interface geometry and molecular junction conductance: geometric fluctuation and stochastic switching. Nano Lett. 5(9), 1668–1675 (2005)CrossRef Basch, H., Cohen, R., Ratner, M.A.: Interface geometry and molecular junction conductance: geometric fluctuation and stochastic switching. Nano Lett. 5(9), 1668–1675 (2005)CrossRef
20.
Zurück zum Zitat Ke, S.H., Baranger, H.U., Yang, W.: Molecular conductance: chemical trends of anchoring groups. J. Am. Chem. Soc. 126(48), 15897–15904 (2004)CrossRef Ke, S.H., Baranger, H.U., Yang, W.: Molecular conductance: chemical trends of anchoring groups. J. Am. Chem. Soc. 126(48), 15897–15904 (2004)CrossRef
21.
Zurück zum Zitat Dell’Angela, M., Kladnik, G., Cossaro, A., Verdini, A., Kamenetska, M., Tamblyn, I., Venkataraman, L.: Relating energy level alignment and amine-linked single molecule junction conductance. Nano Lett. 10(7), 2470–2474 (2010)CrossRef Dell’Angela, M., Kladnik, G., Cossaro, A., Verdini, A., Kamenetska, M., Tamblyn, I., Venkataraman, L.: Relating energy level alignment and amine-linked single molecule junction conductance. Nano Lett. 10(7), 2470–2474 (2010)CrossRef
22.
Zurück zum Zitat Darancet, P., Widawsky, J.R., Choi, H.J., Venkataraman, L., Neaton, J.B.: Quantitative current–voltage characteristics in molecular junctions from first principles. Nano Lett. 12(12), 6250–6254 (2012)CrossRef Darancet, P., Widawsky, J.R., Choi, H.J., Venkataraman, L., Neaton, J.B.: Quantitative current–voltage characteristics in molecular junctions from first principles. Nano Lett. 12(12), 6250–6254 (2012)CrossRef
23.
Zurück zum Zitat Wickenburg, S., Lu, J., Lischner, J., Tsai, H.Z., Omrani, A.A., Riss, A., Wong, D.: Tuning charge and correlation effects for a single molecule on a graphene device. Nat. Commun. 7, 13553 (2016)CrossRef Wickenburg, S., Lu, J., Lischner, J., Tsai, H.Z., Omrani, A.A., Riss, A., Wong, D.: Tuning charge and correlation effects for a single molecule on a graphene device. Nat. Commun. 7, 13553 (2016)CrossRef
24.
Zurück zum Zitat Kamenetska, M., Koentopp, M., Whalley, A.C., Park, Y.S., Steigerwald, M.L., Nuckolls, C., Venkataraman, L.: Formation and evolution of single-molecule junctions. Phys. Rev. Lett. 102(12), 126803 (2009)CrossRef Kamenetska, M., Koentopp, M., Whalley, A.C., Park, Y.S., Steigerwald, M.L., Nuckolls, C., Venkataraman, L.: Formation and evolution of single-molecule junctions. Phys. Rev. Lett. 102(12), 126803 (2009)CrossRef
25.
Zurück zum Zitat Lörtscher, E., Cho, C.J., Mayor, M., Tschudy, M., Rettner, C., Riel, H.: Influence of the anchor group on charge transport through single-molecule junctions. ChemPhysChem 12(9), 1677–1682 (2011)CrossRef Lörtscher, E., Cho, C.J., Mayor, M., Tschudy, M., Rettner, C., Riel, H.: Influence of the anchor group on charge transport through single-molecule junctions. ChemPhysChem 12(9), 1677–1682 (2011)CrossRef
26.
Zurück zum Zitat Li, Z., Smeu, M., Ratner, M.A., Borguet, E.: Effect of anchoring groups on single molecule charge transport through porphyrins. J. Phys. Chem. C 117(29), 14890–14898 (2013)CrossRef Li, Z., Smeu, M., Ratner, M.A., Borguet, E.: Effect of anchoring groups on single molecule charge transport through porphyrins. J. Phys. Chem. C 117(29), 14890–14898 (2013)CrossRef
27.
Zurück zum Zitat Ulrich, J., Esrail, D., Pontius, W., Venkataraman, L., Millar, D., Doerrer, L.H.: Variability of conductance in molecular junctions. J. Phys. Chem. B 110(6), 2462–2466 (2006)CrossRef Ulrich, J., Esrail, D., Pontius, W., Venkataraman, L., Millar, D., Doerrer, L.H.: Variability of conductance in molecular junctions. J. Phys. Chem. B 110(6), 2462–2466 (2006)CrossRef
28.
Zurück zum Zitat Li, C., Pobelov, I., Wandlowski, T., Bagrets, A., Arnold, A., Evers, F.: Charge transport in single Au| alkanedithiol| Au junctions: coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130(1), 318–326 (2008)CrossRef Li, C., Pobelov, I., Wandlowski, T., Bagrets, A., Arnold, A., Evers, F.: Charge transport in single Au| alkanedithiol| Au junctions: coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130(1), 318–326 (2008)CrossRef
29.
Zurück zum Zitat Yasuda, S., Yoshida, S., Sasaki, J., Okutsu, Y., Nakamura, T., Taninaka, A., Shigekawa, H.: Bond fluctuation of S/Se anchoring observed in single-molecule conductance measurements using the point contact method with scanning tunneling microscopy. J. Am. Chem. Soc. 128(24), 7746–7747 (2006)CrossRef Yasuda, S., Yoshida, S., Sasaki, J., Okutsu, Y., Nakamura, T., Taninaka, A., Shigekawa, H.: Bond fluctuation of S/Se anchoring observed in single-molecule conductance measurements using the point contact method with scanning tunneling microscopy. J. Am. Chem. Soc. 128(24), 7746–7747 (2006)CrossRef
30.
Zurück zum Zitat Zhang, Z., Yoshida, N., Imae, T., Xue, Q., Bai, M., Jiang, J., Liu, Z.: A self-assembled monolayer of an alkanoic acid-derivatized porphyrin on gold surface: a structural investigation by surface plasmon resonance, ultraviolet–visible, and infrared spectroscopies. J. Colloid Interface Sci. 243(2), 382–387 (2001)CrossRef Zhang, Z., Yoshida, N., Imae, T., Xue, Q., Bai, M., Jiang, J., Liu, Z.: A self-assembled monolayer of an alkanoic acid-derivatized porphyrin on gold surface: a structural investigation by surface plasmon resonance, ultraviolet–visible, and infrared spectroscopies. J. Colloid Interface Sci. 243(2), 382–387 (2001)CrossRef
31.
Zurück zum Zitat Heera, T.R., Cindrella, L.: Molecular orbital evaluation of charge flow dynamics in natural pigments based photosensitizers. J. Mol. Model. 16(3), 523–533 (2010)CrossRef Heera, T.R., Cindrella, L.: Molecular orbital evaluation of charge flow dynamics in natural pigments based photosensitizers. J. Mol. Model. 16(3), 523–533 (2010)CrossRef
32.
Zurück zum Zitat Cheng, Z.L., Skouta, R., Vazquez, H., Widawsky, J.R., Schneebeli, S., Chen, W., Venkataraman, L.: In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat. Nanotechnol. 6(6), 353–357 (2011)CrossRef Cheng, Z.L., Skouta, R., Vazquez, H., Widawsky, J.R., Schneebeli, S., Chen, W., Venkataraman, L.: In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat. Nanotechnol. 6(6), 353–357 (2011)CrossRef
33.
Zurück zum Zitat Schull, G., Frederiksen, T., Arnau, A., Sánchez-Portal, D., Berndt, R.: Atomic-scale engineering of electrodes for single-molecule contacts. Nat. Nanotechnol. 6(1), 23–27 (2011)CrossRef Schull, G., Frederiksen, T., Arnau, A., Sánchez-Portal, D., Berndt, R.: Atomic-scale engineering of electrodes for single-molecule contacts. Nat. Nanotechnol. 6(1), 23–27 (2011)CrossRef
34.
Zurück zum Zitat Frei, M., Aradhya, S.V., Koentopp, M., Hybertsen, M.S., Venkataraman, L.: Mechanics and chemistry: single molecule bond rupture forces correlate with molecular backbone structure. Nano Lett. 11(4), 1518–1523 (2011)CrossRef Frei, M., Aradhya, S.V., Koentopp, M., Hybertsen, M.S., Venkataraman, L.: Mechanics and chemistry: single molecule bond rupture forces correlate with molecular backbone structure. Nano Lett. 11(4), 1518–1523 (2011)CrossRef
35.
Zurück zum Zitat Hong, W., Manrique, D.Z., Moreno-Garcia, P., Gulcur, M., Mishchenko, A., Lambert, C.J., Wandlowski, T.: Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 134(4), 2292–2304 (2012)CrossRef Hong, W., Manrique, D.Z., Moreno-Garcia, P., Gulcur, M., Mishchenko, A., Lambert, C.J., Wandlowski, T.: Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 134(4), 2292–2304 (2012)CrossRef
36.
Zurück zum Zitat Lörtscher, E., Cho, C.J., Mayor, M., Tschudy, M., Rettner, C., Riel, H.: Influence of the anchor group on charge transport through single-molecule junctions. ChemPhysChem 12(9), 1677–1682 (2011)CrossRef Lörtscher, E., Cho, C.J., Mayor, M., Tschudy, M., Rettner, C., Riel, H.: Influence of the anchor group on charge transport through single-molecule junctions. ChemPhysChem 12(9), 1677–1682 (2011)CrossRef
37.
Zurück zum Zitat Zotti, L.A., Kirchner, T., Cuevas, J.C., Pauly, F., Huhn, T., Scheer, E., Erbe, A.: Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 6(14), 1529–1535 (2010)CrossRef Zotti, L.A., Kirchner, T., Cuevas, J.C., Pauly, F., Huhn, T., Scheer, E., Erbe, A.: Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 6(14), 1529–1535 (2010)CrossRef
38.
Zurück zum Zitat Koepf, M., Koenigsmann, C., Ding, W., Batra, A., Negre, C.F., Venkataraman, L., Crabtree, R.H.: Controlling the rectification properties of molecular junctions through molecule–electrode coupling. Nanoscale 8(36), 16357–16362 (2016)CrossRef Koepf, M., Koenigsmann, C., Ding, W., Batra, A., Negre, C.F., Venkataraman, L., Crabtree, R.H.: Controlling the rectification properties of molecular junctions through molecule–electrode coupling. Nanoscale 8(36), 16357–16362 (2016)CrossRef
39.
Zurück zum Zitat Ulrich, J., Esrail, D., Pontius, W., Venkataraman, L., Millar, D., Doerrer, L.H.: Variability of conductance in molecular junctions. J. Phys. Chem. B 110(6), 2462–2466 (2006)CrossRef Ulrich, J., Esrail, D., Pontius, W., Venkataraman, L., Millar, D., Doerrer, L.H.: Variability of conductance in molecular junctions. J. Phys. Chem. B 110(6), 2462–2466 (2006)CrossRef
40.
Zurück zum Zitat Jamali, M.F., Tagani, M.B., Soleimani, H.R.: Improvement of the thermoelectric efficiency of Pyrene-based molecular junction with doping engineering. Chin. Phys. B 26(12), 123101 (2017)CrossRef Jamali, M.F., Tagani, M.B., Soleimani, H.R.: Improvement of the thermoelectric efficiency of Pyrene-based molecular junction with doping engineering. Chin. Phys. B 26(12), 123101 (2017)CrossRef
41.
Zurück zum Zitat Xue, Y., Ratner, M.A.: End group effect on electrical transport through individual molecules: a microscopic study. Phys. Rev. B 69(8), 085403 (2004)CrossRef Xue, Y., Ratner, M.A.: End group effect on electrical transport through individual molecules: a microscopic study. Phys. Rev. B 69(8), 085403 (2004)CrossRef
42.
Zurück zum Zitat Kim, Y., Hellmuth, T.J., Burkle, M., Pauly, F., Scheer, E.: Characteristics of amine-ended and thiol-ended alkane single-molecule junctions revealed by inelastic electron tunneling spectroscopy. ACS Nano 5(5), 4104–4111 (2011)CrossRef Kim, Y., Hellmuth, T.J., Burkle, M., Pauly, F., Scheer, E.: Characteristics of amine-ended and thiol-ended alkane single-molecule junctions revealed by inelastic electron tunneling spectroscopy. ACS Nano 5(5), 4104–4111 (2011)CrossRef
43.
Zurück zum Zitat Kushmerick, J.G., Whitaker, C.M., Pollack, S.K., Schull, T.L., Shashidhar, R.: Tuning current rectification across molecular junctions. Nanotechnology 15(7), S489 (2004)CrossRef Kushmerick, J.G., Whitaker, C.M., Pollack, S.K., Schull, T.L., Shashidhar, R.: Tuning current rectification across molecular junctions. Nanotechnology 15(7), S489 (2004)CrossRef
44.
Zurück zum Zitat Van Dyck, C., Ratner, M.A.: Molecular rectifiers: a new design based on asymmetric anchoring moieties. Nano Lett. 15(3), 1577–1584 (2015)CrossRef Van Dyck, C., Ratner, M.A.: Molecular rectifiers: a new design based on asymmetric anchoring moieties. Nano Lett. 15(3), 1577–1584 (2015)CrossRef
45.
Zurück zum Zitat Bala, S., Aithal, R.K., Derosa, P., Janes, D., Kuila, D.: Molecular rectifying diodes based on an aluminum/4′-hydroxy-4-biphenyl carboxylic acid/p+-silicon junction. J. Phys. Chem. C 114(48), 20877–20884 (2010)CrossRef Bala, S., Aithal, R.K., Derosa, P., Janes, D., Kuila, D.: Molecular rectifying diodes based on an aluminum/4′-hydroxy-4-biphenyl carboxylic acid/p+-silicon junction. J. Phys. Chem. C 114(48), 20877–20884 (2010)CrossRef
46.
Zurück zum Zitat Metzger, R.M.: Unimolecular rectifiers: present status. Chem. Phys. 326(1), 176–187 (2006)CrossRef Metzger, R.M.: Unimolecular rectifiers: present status. Chem. Phys. 326(1), 176–187 (2006)CrossRef
47.
Zurück zum Zitat Nijhuis, C.A., Reus, W.F., Whitesides, G.M.: Molecular rectification in metal–SAM–metal oxide–metal junctions. J. Am. Chem. Soc. 131(49), 17814–17827 (2009)CrossRef Nijhuis, C.A., Reus, W.F., Whitesides, G.M.: Molecular rectification in metal–SAM–metal oxide–metal junctions. J. Am. Chem. Soc. 131(49), 17814–17827 (2009)CrossRef
48.
Zurück zum Zitat Nijhuis, C.A., Reus, W.F., Barber, J.R., Dickey, M.D., Whitesides, G.M.: Charge transport and rectification in arrays of SAM-based tunneling junctions. Nano Lett. 10(9), 3611–3619 (2010)CrossRef Nijhuis, C.A., Reus, W.F., Barber, J.R., Dickey, M.D., Whitesides, G.M.: Charge transport and rectification in arrays of SAM-based tunneling junctions. Nano Lett. 10(9), 3611–3619 (2010)CrossRef
49.
Zurück zum Zitat Souto, M., Yuan, L., Morales, D.C., Jiang, L., Ratera, I., Nijhuis, C.A., Veciana, J.: Tuning the rectification ratio by changing the electronic nature (open-shell and closed-shell) in donor–acceptor self-assembled monolayers. J. Am. Chem. Soc. 139(12), 4262–4265 (2017)CrossRef Souto, M., Yuan, L., Morales, D.C., Jiang, L., Ratera, I., Nijhuis, C.A., Veciana, J.: Tuning the rectification ratio by changing the electronic nature (open-shell and closed-shell) in donor–acceptor self-assembled monolayers. J. Am. Chem. Soc. 139(12), 4262–4265 (2017)CrossRef
50.
Zurück zum Zitat Ryu, T., Lansac, Y., Jang, Y.H.: Shuttlecock-shaped molecular rectifier: asymmetric electron transport coupled with controlled molecular motion. Nano Lett. 17(7), 4061–4066 (2017)CrossRef Ryu, T., Lansac, Y., Jang, Y.H.: Shuttlecock-shaped molecular rectifier: asymmetric electron transport coupled with controlled molecular motion. Nano Lett. 17(7), 4061–4066 (2017)CrossRef
51.
Zurück zum Zitat Metzger, R.M.: Unimolecular electronics. Chem. Rev. 115(11), 5056–5115 (2015)CrossRef Metzger, R.M.: Unimolecular electronics. Chem. Rev. 115(11), 5056–5115 (2015)CrossRef
52.
Zurück zum Zitat Metzger, R.M.: Unimolecular electronics. J. Mater. Chem. 18(37), 4364–4396 (2008)CrossRef Metzger, R.M.: Unimolecular electronics. J. Mater. Chem. 18(37), 4364–4396 (2008)CrossRef
53.
Zurück zum Zitat Metzger, R.M.: Unimolecular electrical rectifiers. Chem. Rev. 103(9), 3803–3834 (2003)CrossRef Metzger, R.M.: Unimolecular electrical rectifiers. Chem. Rev. 103(9), 3803–3834 (2003)CrossRef
54.
Zurück zum Zitat Stadler, R., Geskin, V., Cornil, J.: A theoretical view of unimolecular rectification. J. Phys. Condens. Matter 20(37), 374105 (2008)CrossRef Stadler, R., Geskin, V., Cornil, J.: A theoretical view of unimolecular rectification. J. Phys. Condens. Matter 20(37), 374105 (2008)CrossRef
55.
Zurück zum Zitat Zahedi, E., Pangh, A.: Current–voltage characteristics through dithienylcyclopentene: a NEGF-DFT study. Phys. E 61, 1–8 (2014)CrossRef Zahedi, E., Pangh, A.: Current–voltage characteristics through dithienylcyclopentene: a NEGF-DFT study. Phys. E 61, 1–8 (2014)CrossRef
56.
Zurück zum Zitat Stefani, D., Gutiérrez-Cerón, C.A., Aravena, D., Labra-Muñoz, J., Suarez, C., Liu, S., Dulic, D.: Charge transport through a single molecule of trans-1-bis-Diazofluorene [60] fullerene. Chem. Mater. 29(17), 7305–7312 (2017)CrossRef Stefani, D., Gutiérrez-Cerón, C.A., Aravena, D., Labra-Muñoz, J., Suarez, C., Liu, S., Dulic, D.: Charge transport through a single molecule of trans-1-bis-Diazofluorene [60] fullerene. Chem. Mater. 29(17), 7305–7312 (2017)CrossRef
57.
Zurück zum Zitat Sebera, J., Kolivoska, V., Valášek, M., Gasior, J., Sokolová, R., Meszaros, G., Hromadová, M.: Tuning charge transport properties of asymmetric molecular junctions. J. Phys. Chem. C 121(23), 12885–12894 (2017)CrossRef Sebera, J., Kolivoska, V., Valášek, M., Gasior, J., Sokolová, R., Meszaros, G., Hromadová, M.: Tuning charge transport properties of asymmetric molecular junctions. J. Phys. Chem. C 121(23), 12885–12894 (2017)CrossRef
58.
Zurück zum Zitat Wang, L.H., Guo, Y., Tian, C.F., Song, X.P., Ding, B.J.: Negative differential resistance and rectifying behaviors in atomic molecular device with different anchoring groups. Phys. E 43(1), 524–528 (2010)CrossRef Wang, L.H., Guo, Y., Tian, C.F., Song, X.P., Ding, B.J.: Negative differential resistance and rectifying behaviors in atomic molecular device with different anchoring groups. Phys. E 43(1), 524–528 (2010)CrossRef
59.
Zurück zum Zitat Zhang, H., Zeng, J., Chen, K.Q.: Rectifying and negative differential resistance behaviors induced by asymmetric electrode coupling in Pyrene-based molecular device. Phys. E 44(7), 1631–1635 (2012)CrossRef Zhang, H., Zeng, J., Chen, K.Q.: Rectifying and negative differential resistance behaviors induced by asymmetric electrode coupling in Pyrene-based molecular device. Phys. E 44(7), 1631–1635 (2012)CrossRef
60.
Zurück zum Zitat Fan, Z.Q., Zhang, Z.H., Qiu, M., Deng, X.Q., Tang, G.P.: The site effects of B or N doping on IV characteristics of a single Pyrene molecular device. Appl. Phys. Lett. 101(7), 073104 (2012)CrossRef Fan, Z.Q., Zhang, Z.H., Qiu, M., Deng, X.Q., Tang, G.P.: The site effects of B or N doping on IV characteristics of a single Pyrene molecular device. Appl. Phys. Lett. 101(7), 073104 (2012)CrossRef
61.
Zurück zum Zitat Brandbyge, M., Mozos, J.L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65(16), 165401 (2002)CrossRef Brandbyge, M., Mozos, J.L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65(16), 165401 (2002)CrossRef
62.
Zurück zum Zitat Zhang, Z., Yang, Z., Yuan, J., Zhang, H., Ming, Q., Deng, X.: Electronic transport properties of pheny1 based molecular devices. Solid State Commun. 149(1), 60–63 (2009)CrossRef Zhang, Z., Yang, Z., Yuan, J., Zhang, H., Ming, Q., Deng, X.: Electronic transport properties of pheny1 based molecular devices. Solid State Commun. 149(1), 60–63 (2009)CrossRef
63.
Zurück zum Zitat Liu, J., Kind, M., Schüpbach, B., Käfer, D., Winkler, S., Zhang, W., Wöll, C.: Triptycene-terminated thiolate and selenolate monolayers on Au (111). Beilstein J. Nanotechnol. 8, 892 (2017)CrossRef Liu, J., Kind, M., Schüpbach, B., Käfer, D., Winkler, S., Zhang, W., Wöll, C.: Triptycene-terminated thiolate and selenolate monolayers on Au (111). Beilstein J. Nanotechnol. 8, 892 (2017)CrossRef
64.
Zurück zum Zitat Lud, S.Q., Neppl, S., Richter, G., Bruno, P., Gruen, D.M., Jordan, R., Garrido, J.A.: Controlling surface functionality through generation of thiol groups in a self-assembled monolayer. Langmuir 26(20), 15895–15900 (2010)CrossRef Lud, S.Q., Neppl, S., Richter, G., Bruno, P., Gruen, D.M., Jordan, R., Garrido, J.A.: Controlling surface functionality through generation of thiol groups in a self-assembled monolayer. Langmuir 26(20), 15895–15900 (2010)CrossRef
65.
Zurück zum Zitat Rangel, T., Ferretti, A., Olevano, V., Rignanese, G.M.: Many-body correlations and coupling in benzene-dithiol junctions. Phys. Rev. B 95(11), 115137 (2017)CrossRef Rangel, T., Ferretti, A., Olevano, V., Rignanese, G.M.: Many-body correlations and coupling in benzene-dithiol junctions. Phys. Rev. B 95(11), 115137 (2017)CrossRef
66.
Zurück zum Zitat Kristensen, I.S., Mowbray, D.J., Thygesen, K.S., Jacobsen, K.W.: Comparative study of anchoring groups for molecular electronics: structure and conductance of Au–S–Au and Au–NH2–Au junctions. J. Phys. Condens. Matter 20(37), 374101 (2008)CrossRef Kristensen, I.S., Mowbray, D.J., Thygesen, K.S., Jacobsen, K.W.: Comparative study of anchoring groups for molecular electronics: structure and conductance of Au–S–Au and Au–NH2–Au junctions. J. Phys. Condens. Matter 20(37), 374101 (2008)CrossRef
67.
Zurück zum Zitat Ford, M.J., Hoft, R.C., McDonagh, A.M., Cortie, M.B.: Rectification in donor–acceptor molecular junctions. J. Phys. Condens. Matter 20(37), 374106 (2008)CrossRef Ford, M.J., Hoft, R.C., McDonagh, A.M., Cortie, M.B.: Rectification in donor–acceptor molecular junctions. J. Phys. Condens. Matter 20(37), 374106 (2008)CrossRef
68.
Zurück zum Zitat Mishchenko, A., Zotti, L.A., Vonlanthen, D., Bürkle, M., Pauly, F., Cuevas, J.C., Wandlowski, T.: Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133(2), 184–187 (2010)CrossRef Mishchenko, A., Zotti, L.A., Vonlanthen, D., Bürkle, M., Pauly, F., Cuevas, J.C., Wandlowski, T.: Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133(2), 184–187 (2010)CrossRef
69.
Zurück zum Zitat Nigam, S., Sahoo, S.K., Sarkar, P., Majumder, C.: Chair like NiAu6: clusters assemblies and CO oxidation study by ab initio methods. Chem. Phys. Lett. 584, 108–112 (2013)CrossRef Nigam, S., Sahoo, S.K., Sarkar, P., Majumder, C.: Chair like NiAu6: clusters assemblies and CO oxidation study by ab initio methods. Chem. Phys. Lett. 584, 108–112 (2013)CrossRef
70.
Zurück zum Zitat Ganji, M.D.: Azopyridine molecular conductor: a superior device for molecular switch technology. Electron. Mater. Lett. 8(6), 565–570 (2012)CrossRef Ganji, M.D.: Azopyridine molecular conductor: a superior device for molecular switch technology. Electron. Mater. Lett. 8(6), 565–570 (2012)CrossRef
71.
Zurück zum Zitat Quek, S.Y., Venkataraman, L., Choi, H.J., Louie, S.G., Hybertsen, M.S., Neaton, J.B.: Amine–gold linked single-molecule circuits: experiment and theory. Nano Lett. 7(11), 3477–3482 (2007)CrossRef Quek, S.Y., Venkataraman, L., Choi, H.J., Louie, S.G., Hybertsen, M.S., Neaton, J.B.: Amine–gold linked single-molecule circuits: experiment and theory. Nano Lett. 7(11), 3477–3482 (2007)CrossRef
72.
Zurück zum Zitat Paulsson, M., Frederiksen, T., Brandbyge, M.: Inelastic transport through molecules: comparing first-principles calculations to experiments. Nano Lett. 6(2), 258–262 (2006)CrossRef Paulsson, M., Frederiksen, T., Brandbyge, M.: Inelastic transport through molecules: comparing first-principles calculations to experiments. Nano Lett. 6(2), 258–262 (2006)CrossRef
73.
Zurück zum Zitat Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)CrossRef Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)CrossRef
74.
Zurück zum Zitat Datta, S.: Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge (1997) Datta, S.: Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge (1997)
75.
Zurück zum Zitat Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31(10), 6207 (1985)CrossRef Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31(10), 6207 (1985)CrossRef
76.
Zurück zum Zitat Fan, Z.Q., Zhang, Z.H., Deng, X.Q., Tang, G.P., Yang, C.H., Sun, L., Zhu, H.L.: Effect of electrode twisting on electronic transport properties of atomic carbon wires. Carbon 98, 179–186 (2016)CrossRef Fan, Z.Q., Zhang, Z.H., Deng, X.Q., Tang, G.P., Yang, C.H., Sun, L., Zhu, H.L.: Effect of electrode twisting on electronic transport properties of atomic carbon wires. Carbon 98, 179–186 (2016)CrossRef
77.
Zurück zum Zitat Huisman, E.H., Guédon, C.M., van Wees, B.J., van der Molen, S.J.: Interpretation of transition voltage spectroscopy. Nano Lett. 9(11), 3909–3913 (2009)CrossRef Huisman, E.H., Guédon, C.M., van Wees, B.J., van der Molen, S.J.: Interpretation of transition voltage spectroscopy. Nano Lett. 9(11), 3909–3913 (2009)CrossRef
78.
Zurück zum Zitat Chen, X., Braunschweig, A.B., Wiester, M.J., Yeganeh, S., Ratner, M.A., Mirkin, C.A.: Spectroscopic tracking of molecular transport junctions generated by using click chemistry. Angew. Chem. Int. Ed. 48(28), 5178–5181 (2009)CrossRef Chen, X., Braunschweig, A.B., Wiester, M.J., Yeganeh, S., Ratner, M.A., Mirkin, C.A.: Spectroscopic tracking of molecular transport junctions generated by using click chemistry. Angew. Chem. Int. Ed. 48(28), 5178–5181 (2009)CrossRef
79.
Zurück zum Zitat Podstawka, E., Ozaki, Y., Proniewicz, L.M.: Part III: surface-enhanced Raman scattering of amino acids and their homodipeptide monolayers deposited onto colloidal gold surface. Appl. Spectrosc. 59(12), 1516–1526 (2005)CrossRef Podstawka, E., Ozaki, Y., Proniewicz, L.M.: Part III: surface-enhanced Raman scattering of amino acids and their homodipeptide monolayers deposited onto colloidal gold surface. Appl. Spectrosc. 59(12), 1516–1526 (2005)CrossRef
80.
Zurück zum Zitat Chen, F., Li, X., Hihath, J., Huang, Z., Tao, N.: Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128(49), 15874–15881 (2006)CrossRef Chen, F., Li, X., Hihath, J., Huang, Z., Tao, N.: Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128(49), 15874–15881 (2006)CrossRef
Metadaten
Titel
The maximum rectification ratio of pyrene-based molecular devices: a systematic study
verfasst von
M. Farid Jamali
H. Rahimpour Soleimani
M. Bagheri Tagani
Publikationsdatum
01.02.2019
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 2/2019
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-019-01307-5

Weitere Artikel der Ausgabe 2/2019

Journal of Computational Electronics 2/2019 Zur Ausgabe

Neuer Inhalt