Skip to main content

2018 | OriginalPaper | Buchkapitel

3. The Motor, Cognitive, Affective, and Autonomic Functions of the Basal Ganglia

verfasst von : Ahmed A. Moustafa, Alekhya Mandali, Pragathi Priyadharsini Balasubramani, V. Srinivasa Chakravarthy

Erschienen in: Computational Neuroscience Models of the Basal Ganglia

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The basal ganglia are involved in several processes, ranging from motor to cognitive ones. This chapter briefly discusses the role of the basal ganglia in motor (including reaching, handwriting, precision grip, gait, saccade generation, and speech), cognitive (action selection, decision making, attention, working memory, sequence learning, and sleep regulation), mood/emotion (negative and positive affect), and autonomic (gastrointestinal and cardiovascular) processes. The chapter summarizes key experimental studies explaining the role of the basal ganglia in all of these motor, cognitive, and affective processes. Accordingly, this chapter provides a background on the function of the basal ganglia, which is key information that guides the reader to understand the following computational modeling efforts to understand the role of the basal ganglia in several functional processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alm, P. A. (2004). Stuttering and the basal ganglia circuits: A critical review of possible relations. Journal of Communication Disorders, 37(4), 325–369.CrossRef Alm, P. A. (2004). Stuttering and the basal ganglia circuits: A critical review of possible relations. Journal of Communication Disorders, 37(4), 325–369.CrossRef
Zurück zum Zitat Almeida, Q. J., & Lebold, C. A. (2010). Freezing of gait in Parkinson’s disease: A perceptual cause for a motor impairment? Journal of Neurology, Neurosurgery and Psychiatry, 81(5), 513–518.CrossRef Almeida, Q. J., & Lebold, C. A. (2010). Freezing of gait in Parkinson’s disease: A perceptual cause for a motor impairment? Journal of Neurology, Neurosurgery and Psychiatry, 81(5), 513–518.CrossRef
Zurück zum Zitat Anderson, J. M., Hughes, J. D., Rothi, L. J. G., Crucian, G. P., & Heilman, K. (1999). Developmental stuttering and Parkinson’s disease: The effects of levodopa treatment. Journal of Neurology, Neurosurgery and Psychiatry, 66(6), 776–778.CrossRef Anderson, J. M., Hughes, J. D., Rothi, L. J. G., Crucian, G. P., & Heilman, K. (1999). Developmental stuttering and Parkinson’s disease: The effects of levodopa treatment. Journal of Neurology, Neurosurgery and Psychiatry, 66(6), 776–778.CrossRef
Zurück zum Zitat Appenzeller, O., & Goss, J. E. (1971). Autonomic deficits in Parkinson’s syndrome. Archives of Neurology, 24(1), 50–57.CrossRef Appenzeller, O., & Goss, J. E. (1971). Autonomic deficits in Parkinson’s syndrome. Archives of Neurology, 24(1), 50–57.CrossRef
Zurück zum Zitat Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. The Journal of Neuroscience, 14(7), 4467–4480. Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. The Journal of Neuroscience, 14(7), 4467–4480.
Zurück zum Zitat Basso, M. A., & Wurtz, R. H. (2002). Neuronal activity in substantia nigra pars reticulata during target selection. Journal of Neuroscience, 22(5), 1883–1894. Basso, M. A., & Wurtz, R. H. (2002). Neuronal activity in substantia nigra pars reticulata during target selection. Journal of Neuroscience, 22(5), 1883–1894.
Zurück zum Zitat Beato, R., Levy, R., Pillon, B., Vidal, C., du Montcel, S. T., Deweer, B., … Cardoso, F. (2008). Working memory in Parkinson’s disease patients: Clinical features and response to levodopa. Arquivos de Neuro-Psiquiatria, 66(2A), 147–151. Beato, R., Levy, R., Pillon, B., Vidal, C., du Montcel, S. T., Deweer, B., … Cardoso, F. (2008). Working memory in Parkinson’s disease patients: Clinical features and response to levodopa. Arquivos de Neuro-Psiquiatria, 66(2A), 147–151.
Zurück zum Zitat Beck, A. K., Lutjens, G., Schwabe, K., Dengler, R., Krauss, J. K., & Sandmann, P. (2017). Thalamic and basal ganglia regions are involved in attentional processing of behaviorally significant events: Evidence from simultaneous depth and scalp EEG. Brain Structure and Function. https://doi.org/10.1007/s00429-017-1506-z. Beck, A. K., Lutjens, G., Schwabe, K., Dengler, R., Krauss, J. K., & Sandmann, P. (2017). Thalamic and basal ganglia regions are involved in attentional processing of behaviorally significant events: Evidence from simultaneous depth and scalp EEG. Brain Structure and Function. https://​doi.​org/​10.​1007/​s00429-017-1506-z.
Zurück zum Zitat Beckstead, R. M., Domesick, V. B., & Nauta, W. J. (1993). Efferent connections of the substantia nigra and ventral tegmental area in the rat. Neuroanatomy (pp. 449–475). Berlin: Springer. Beckstead, R. M., Domesick, V. B., & Nauta, W. J. (1993). Efferent connections of the substantia nigra and ventral tegmental area in the rat. Neuroanatomy (pp. 449–475). Berlin: Springer.
Zurück zum Zitat Benecke, R., Rothwell, J., Dick, J., Day, B., & Marsden, C. (1987). Disturbance of sequential movements in patients with Parkinson’s disease. Brain, 110(2), 361–379.CrossRef Benecke, R., Rothwell, J., Dick, J., Day, B., & Marsden, C. (1987). Disturbance of sequential movements in patients with Parkinson’s disease. Brain, 110(2), 361–379.CrossRef
Zurück zum Zitat Benke, T., Hohenstein, C., Poewe, W., & Butterworth, B. (2000). Repetitive speech phenomena in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 69(3), 319–324.CrossRef Benke, T., Hohenstein, C., Poewe, W., & Butterworth, B. (2000). Repetitive speech phenomena in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 69(3), 319–324.CrossRef
Zurück zum Zitat Boulougouris, V., & Tsaltas, E. (2008). Serotonergic and dopaminergic modulation of attentional processes. Progress in Brain Research, 172, 517–542.CrossRef Boulougouris, V., & Tsaltas, E. (2008). Serotonergic and dopaminergic modulation of attentional processes. Progress in Brain Research, 172, 517–542.CrossRef
Zurück zum Zitat Broderick, M. P., Van Gemmert, A. W., Shill, H. A., & Stelmach, G. E. (2009). Hypometria and bradykinesia during drawing movements in individuals with Parkinson’s disease. Experimental Brain Research, 197(3), 223–233.CrossRef Broderick, M. P., Van Gemmert, A. W., Shill, H. A., & Stelmach, G. E. (2009). Hypometria and bradykinesia during drawing movements in individuals with Parkinson’s disease. Experimental Brain Research, 197(3), 223–233.CrossRef
Zurück zum Zitat Brown, R., & Marsden, C. (1988). ‘Subcorttcal dementia’: The neuropsychological evidence. Neuroscience, 25(2), 363–387.CrossRef Brown, R., & Marsden, C. (1988). ‘Subcorttcal dementia’: The neuropsychological evidence. Neuroscience, 25(2), 363–387.CrossRef
Zurück zum Zitat Canter, G. J. (1963). Speech characteristics of patients with Parkinson’s disease: I. Intensity, pitch, and duration. Journal of Speech & Hearing Disorders. Canter, G. J. (1963). Speech characteristics of patients with Parkinson’s disease: I. Intensity, pitch, and duration. Journal of Speech & Hearing Disorders.
Zurück zum Zitat Cantiniaux, S., Vaugoyeau, M., Robert, D., Horrelou-Pitek, C., Mancini, J., Witjas, T., et al. (2010). Comparative analysis of gait and speech in Parkinson’s disease: Hypokinetic or dysrhythmic disorders? Journal of Neurology, Neurosurgery and Psychiatry, 81(2), 177–184.CrossRef Cantiniaux, S., Vaugoyeau, M., Robert, D., Horrelou-Pitek, C., Mancini, J., Witjas, T., et al. (2010). Comparative analysis of gait and speech in Parkinson’s disease: Hypokinetic or dysrhythmic disorders? Journal of Neurology, Neurosurgery and Psychiatry, 81(2), 177–184.CrossRef
Zurück zum Zitat Cappa, S., & Abutalebi, J. (1999). Subcortical aphasia. The Concise Encyclopedia of Language Pathology, 319–327. Cappa, S., & Abutalebi, J. (1999). Subcortical aphasia. The Concise Encyclopedia of Language Pathology, 319–327.
Zurück zum Zitat Carbon, M., & Marie, R. M. (2003). Functional imaging of cognition in Parkinson’s disease. Current Opinion in Neurology, 16(4), 475–480. Carbon, M., & Marie, R. M. (2003). Functional imaging of cognition in Parkinson’s disease. Current Opinion in Neurology, 16(4), 475–480.
Zurück zum Zitat Cechetto, D. F., & Shoemaker, J. K. (2009). Functional neuroanatomy of autonomic regulation. Neuroimage, 47(3), 795–803.CrossRef Cechetto, D. F., & Shoemaker, J. K. (2009). Functional neuroanatomy of autonomic regulation. Neuroimage, 47(3), 795–803.CrossRef
Zurück zum Zitat Chevalier, G., & Deniau, J. (1990). Disinhibition as a basic process in the expression of striatal functions. Trends in Neurosciences, 13(7), 277–280.CrossRef Chevalier, G., & Deniau, J. (1990). Disinhibition as a basic process in the expression of striatal functions. Trends in Neurosciences, 13(7), 277–280.CrossRef
Zurück zum Zitat Cowie, D., Limousin, P., Peters, A., & Day, B. L. (2010). Insights into the neural control of locomotion from walking through doorways in Parkinson’s disease. Neuropsychologia, 48(9), 2750–2757.CrossRef Cowie, D., Limousin, P., Peters, A., & Day, B. L. (2010). Insights into the neural control of locomotion from walking through doorways in Parkinson’s disease. Neuropsychologia, 48(9), 2750–2757.CrossRef
Zurück zum Zitat Czernecki, V., Schupbach, M., Yaici, S., Levy, R., Bardinet, E., Yelnik, J., … Agid, Y. (2008). Apathy following subthalamic stimulation in Parkinson disease: A dopamine responsive symptom. Movement Disorder, 23(7), 964–969. Czernecki, V., Schupbach, M., Yaici, S., Levy, R., Bardinet, E., Yelnik, J., … Agid, Y. (2008). Apathy following subthalamic stimulation in Parkinson disease: A dopamine responsive symptom. Movement Disorder, 23(7), 964–969.
Zurück zum Zitat Dannlowski, U., Domschke, K., Birosova, E., Lawford, B., Young, R., Voisey, J., … Zwanzger, P. (2013). Dopamine D(3) receptor gene variation: Impact on electroconvulsive therapy response and ventral striatum responsiveness in depression. International Journal of Neuropsychopharmacology, 16(7), 1443–1459. https://doi.org/10.1017/s1461145711001659 S1461145711001659 [pii]. Dannlowski, U., Domschke, K., Birosova, E., Lawford, B., Young, R., Voisey, J., … Zwanzger, P. (2013). Dopamine D(3) receptor gene variation: Impact on electroconvulsive therapy response and ventral striatum responsiveness in depression. International Journal of Neuropsychopharmacology, 16(7), 1443–1459. https://​doi.​org/​10.​1017/​s146114571100165​9 S1461145711001659 [pii].
Zurück zum Zitat Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876–879.CrossRef Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876–879.CrossRef
Zurück zum Zitat Doya, K. (2002). Metalearning and neuromodulation. Neural Networks, 15(4), 495–506.CrossRef Doya, K. (2002). Metalearning and neuromodulation. Neural Networks, 15(4), 495–506.CrossRef
Zurück zum Zitat Edwards, L., Quigley, E., Hofman, R., & Pfeiffer, R. (1993). Gastrointestinal symptoms in parkinson disease: 18-month follow-up study. Movement Disorders, 8(1), 83–86.CrossRef Edwards, L., Quigley, E., Hofman, R., & Pfeiffer, R. (1993). Gastrointestinal symptoms in parkinson disease: 18-month follow-up study. Movement Disorders, 8(1), 83–86.CrossRef
Zurück zum Zitat Faist, M., Xie, J., Kurz, D., Berger, W., Maurer, C., Pollak, P., et al. (2001). Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson’s disease. Brain, 124(8), 1590–1600.CrossRef Faist, M., Xie, J., Kurz, D., Berger, W., Maurer, C., Pollak, P., et al. (2001). Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson’s disease. Brain, 124(8), 1590–1600.CrossRef
Zurück zum Zitat Fallon, S. J., Mattiesing, R. M., Muhammed, K., Manohar, S., & Husain, M. (2017). Fractionating the neurocognitive mechanisms underlying working memory: Independent effects of dopamine and Parkinson’s disease. Cerebral Cortex, 1–12. https://doi.org/10.1093/cercor/bhx242. Fallon, S. J., Mattiesing, R. M., Muhammed, K., Manohar, S., & Husain, M. (2017). Fractionating the neurocognitive mechanisms underlying working memory: Independent effects of dopamine and Parkinson’s disease. Cerebral Cortex, 1–12. https://​doi.​org/​10.​1093/​cercor/​bhx242.
Zurück zum Zitat Fellows, S. J., Noth, J., & Schwarz, M. (1998). Precision grip and Parkinson’s disease. Brain: A Journal of Neurology, 121(9), 1771–1784.CrossRef Fellows, S. J., Noth, J., & Schwarz, M. (1998). Precision grip and Parkinson’s disease. Brain: A Journal of Neurology, 121(9), 1771–1784.CrossRef
Zurück zum Zitat Fournet, N., Moreaud, O., Roulin, J. L., Naegele, B., & Pellat, J. (2000). Working memory functioning in medicated Parkinson’s disease patients and the effect of withdrawal of dopaminergic medication. Neuropsychology, 14(2), 247–253.CrossRef Fournet, N., Moreaud, O., Roulin, J. L., Naegele, B., & Pellat, J. (2000). Working memory functioning in medicated Parkinson’s disease patients and the effect of withdrawal of dopaminergic medication. Neuropsychology, 14(2), 247–253.CrossRef
Zurück zum Zitat Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17(1), 51–72.CrossRef Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17(1), 51–72.CrossRef
Zurück zum Zitat Fuster, J. M. (1973). Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory. Journal of Neurophysiology. Fuster, J. M. (1973). Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory. Journal of Neurophysiology.
Zurück zum Zitat Goldman-Rakic, P. S. (1991). Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates. Progress in Brain Research, 85, 325–336.CrossRef Goldman-Rakic, P. S. (1991). Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates. Progress in Brain Research, 85, 325–336.CrossRef
Zurück zum Zitat Goldstein, D., Holmes, C., Dendi, R., Bruce, S., & Li, S.-T. (2002). Orthostatic hypotension from sympathetic denervation in Parkinson’s disease. Neurology, 58(8), 1247–1255.CrossRef Goldstein, D., Holmes, C., Dendi, R., Bruce, S., & Li, S.-T. (2002). Orthostatic hypotension from sympathetic denervation in Parkinson’s disease. Neurology, 58(8), 1247–1255.CrossRef
Zurück zum Zitat Graham, A. M., Buss, C., Rasmussen, J. M., Rudolph, M. D., Demeter, D. V., Gilmore, J. H., … Fair, D. A. (2016). Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age. Developmental Cognitive Neuroscience, 18, 12–25. https://doi.org/10.1016/j.dcn.2015.09.006. Graham, A. M., Buss, C., Rasmussen, J. M., Rudolph, M. D., Demeter, D. V., Gilmore, J. H., … Fair, D. A. (2016). Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age. Developmental Cognitive Neuroscience, 18, 12–25. https://​doi.​org/​10.​1016/​j.​dcn.​2015.​09.​006.
Zurück zum Zitat Grillner, S., Robertson, B., & Stephenson-Jones, M. (2013). The evolutionary origin of the vertebrate basal ganglia and its role in action selection. The Journal of Physiology, 591(22), 5425–5431.CrossRef Grillner, S., Robertson, B., & Stephenson-Jones, M. (2013). The evolutionary origin of the vertebrate basal ganglia and its role in action selection. The Journal of Physiology, 591(22), 5425–5431.CrossRef
Zurück zum Zitat Grossman, M., Carvell, S., Stern, M. B., Gollomp, S., & Hurtig, H. I. (1992). Sentence comprehension in Parkinson’s disease: The role of attention and memory. Brain and Language, 42(4), 347–384.CrossRef Grossman, M., Carvell, S., Stern, M. B., Gollomp, S., & Hurtig, H. I. (1992). Sentence comprehension in Parkinson’s disease: The role of attention and memory. Brain and Language, 42(4), 347–384.CrossRef
Zurück zum Zitat Grossman, M., Zurif, E., Lee, C., Prather, P., Kalmanson, J., Stern, M. B., et al. (2002). Information processing speed and sentence comprehension in Parkinson’s disease. Neuropsychology, 16(2), 174.CrossRef Grossman, M., Zurif, E., Lee, C., Prather, P., Kalmanson, J., Stern, M. B., et al. (2002). Information processing speed and sentence comprehension in Parkinson’s disease. Neuropsychology, 16(2), 174.CrossRef
Zurück zum Zitat Gubbay, S., & Barwick, D. (1966). Two cases of accidental hypothermia in Parkinson’s disease with unusual EEG findings. Journal of Neurology, Neurosurgery and Psychiatry, 29(5), 459.CrossRef Gubbay, S., & Barwick, D. (1966). Two cases of accidental hypothermia in Parkinson’s disease with unusual EEG findings. Journal of Neurology, Neurosurgery and Psychiatry, 29(5), 459.CrossRef
Zurück zum Zitat Hall, J. M., O’Callaghan, C., Shine, J. M., Muller, A. J., Phillips, J. R., Walton, C. C., … Moustafa, A. A. (2016). Dysfunction in attentional processing in patients with Parkinson’s disease and visual hallucinations. Journal of Neural Transmission (Vienna), 123(5), 503–507. https://doi.org/10.1007/s00702-016-1528-3. Hall, J. M., O’Callaghan, C., Shine, J. M., Muller, A. J., Phillips, J. R., Walton, C. C., … Moustafa, A. A. (2016). Dysfunction in attentional processing in patients with Parkinson’s disease and visual hallucinations. Journal of Neural Transmission (Vienna), 123(5), 503–507. https://​doi.​org/​10.​1007/​s00702-016-1528-3.
Zurück zum Zitat Harel, B., Cannizzaro, M., & Snyder, P. J. (2004). Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: A longitudinal case study. Brain and Cognition, 56(1), 24–29.CrossRef Harel, B., Cannizzaro, M., & Snyder, P. J. (2004). Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: A longitudinal case study. Brain and Cognition, 56(1), 24–29.CrossRef
Zurück zum Zitat Harrington, D. L., & Haaland, K. Y. (1991). Sequencing in Parkinson’s disease: Abnormalities in programming and controlling movement. Brain, 114(1), 99–115. Harrington, D. L., & Haaland, K. Y. (1991). Sequencing in Parkinson’s disease: Abnormalities in programming and controlling movement. Brain, 114(1), 99–115.
Zurück zum Zitat Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780–784.CrossRef Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780–784.CrossRef
Zurück zum Zitat Hartelius, L., & Svensson, P. (1994). Speech and swallowing symptoms associated with Parkinson’s disease and multiple sclerosis: a survey. Folia Phoniatrica et Logopaedica, 46(1), 9–17.CrossRef Hartelius, L., & Svensson, P. (1994). Speech and swallowing symptoms associated with Parkinson’s disease and multiple sclerosis: a survey. Folia Phoniatrica et Logopaedica, 46(1), 9–17.CrossRef
Zurück zum Zitat Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y., & Goldberger, A. L. (1998). Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Movement Disorders, 13(3), 428–437.CrossRef Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y., & Goldberger, A. L. (1998). Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Movement Disorders, 13(3), 428–437.CrossRef
Zurück zum Zitat Hayes, A. E., Davidson, M. C., Keele, S. W., & Rafal, R. D. (1998). Toward a functional analysis of the basal ganglia. Journal of Cognitive Neuroscience, 10(2), 178–198.CrossRef Hayes, A. E., Davidson, M. C., Keele, S. W., & Rafal, R. D. (1998). Toward a functional analysis of the basal ganglia. Journal of Cognitive Neuroscience, 10(2), 178–198.CrossRef
Zurück zum Zitat Herzallah, M. M., Moustafa, A. A., Misk, A. J., Al-Dweib, L. H., Abdelrazeq, S. A., Myers, C. E., et al. (2010). Depression impairs learning whereas anticholinergics impair transfer generalization in Parkinson patients tested on dopaminergic medications. Cognitive and Behavioral Neurology, 23(2), 98–105. https://doi.org/10.1097/WNN.0b013e3181df3048.CrossRef Herzallah, M. M., Moustafa, A. A., Misk, A. J., Al-Dweib, L. H., Abdelrazeq, S. A., Myers, C. E., et al. (2010). Depression impairs learning whereas anticholinergics impair transfer generalization in Parkinson patients tested on dopaminergic medications. Cognitive and Behavioral Neurology, 23(2), 98–105. https://​doi.​org/​10.​1097/​WNN.​0b013e3181df3048​.CrossRef
Zurück zum Zitat Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K., … Doya, K. (1999). Parallel neural networks for learning sequential procedures. Trends in Neurosciences, 22(10), 464–471. Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K., … Doya, K. (1999). Parallel neural networks for learning sequential procedures. Trends in Neurosciences, 22(10), 464–471.
Zurück zum Zitat Hikosaka, O., Nakamura, K., Sakai, K., & Nakahara, H. (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology, 12(2), 217–222.CrossRef Hikosaka, O., Nakamura, K., Sakai, K., & Nakahara, H. (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology, 12(2), 217–222.CrossRef
Zurück zum Zitat Hikosaka, O., Takikawa, Y., & Kawagoe, R. (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiological Reviews, 80(3), 953–978.CrossRef Hikosaka, O., Takikawa, Y., & Kawagoe, R. (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiological Reviews, 80(3), 953–978.CrossRef
Zurück zum Zitat Hikosaka, O., & Wurtz, R. H. (1983). Effects on eye movements of a GABA agonist and antagonist injected into monkey superior colliculus. Brain Research, 272(2), 368–372.CrossRef Hikosaka, O., & Wurtz, R. H. (1983). Effects on eye movements of a GABA agonist and antagonist injected into monkey superior colliculus. Brain Research, 272(2), 368–372.CrossRef
Zurück zum Zitat Hodgson, T. L., Dittrich, W. H., Henderson, L., & Kennard, C. (1999). Eye movements and spatial working memory in Parkinson’s disease. Neuropsychologia, 37(8), 927–938.CrossRef Hodgson, T. L., Dittrich, W. H., Henderson, L., & Kennard, C. (1999). Eye movements and spatial working memory in Parkinson’s disease. Neuropsychologia, 37(8), 927–938.CrossRef
Zurück zum Zitat Inglis, W. L., & Winn, P. (1995). The pedunculopontine tegmental nucleus: Where the striatum meets the reticular formation. Progress in Neurobiology, 47(1), 1–29.CrossRef Inglis, W. L., & Winn, P. (1995). The pedunculopontine tegmental nucleus: Where the striatum meets the reticular formation. Progress in Neurobiology, 47(1), 1–29.CrossRef
Zurück zum Zitat Ingvarsson, P. E., Gordon, A. M., & Forssberg, H. (1997). Coordination of manipulative forces in Parkinson’s disease. Experimental Neurology, 145(2), 489–501.CrossRef Ingvarsson, P. E., Gordon, A. M., & Forssberg, H. (1997). Coordination of manipulative forces in Parkinson’s disease. Experimental Neurology, 145(2), 489–501.CrossRef
Zurück zum Zitat Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration–exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience, 23(7), 1587–1596.CrossRef Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration–exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience, 23(7), 1587–1596.CrossRef
Zurück zum Zitat Kallio, M., Haapaniemi, T., Turkka, J., Suominen, K., Tolonen, U., Sotaniemi, K., … Myllylä, V. (2000). Heart rate variability in patients with untreated Parkinson’s disease. European Journal of Neurology, 7(6), 667–672. Kallio, M., Haapaniemi, T., Turkka, J., Suominen, K., Tolonen, U., Sotaniemi, K., … Myllylä, V. (2000). Heart rate variability in patients with untreated Parkinson’s disease. European Journal of Neurology, 7(6), 667–672.
Zurück zum Zitat Karachi, C., Yelnik, J., Tande, D., Tremblay, L., Hirsch, E. C., & Francois, C. (2005). The pallidosubthalamic projection: An anatomical substrate for nonmotor functions of the subthalamic nucleus in primates. Movement Disorders, 20(2), 172–180.CrossRef Karachi, C., Yelnik, J., Tande, D., Tremblay, L., Hirsch, E. C., & Francois, C. (2005). The pallidosubthalamic projection: An anatomical substrate for nonmotor functions of the subthalamic nucleus in primates. Movement Disorders, 20(2), 172–180.CrossRef
Zurück zum Zitat Kato, M., Miyashita, N., Hikosaka, O., Matsumura, M., Usui, S., & Kori, A. (1995). Eye movements in monkeys with local dopamine depletion in the caudate nucleus. I. Deficits in spontaneous saccades. Journal of Neuroscience, 15(1), 912–927. Kato, M., Miyashita, N., Hikosaka, O., Matsumura, M., Usui, S., & Kori, A. (1995). Eye movements in monkeys with local dopamine depletion in the caudate nucleus. I. Deficits in spontaneous saccades. Journal of Neuroscience, 15(1), 912–927.
Zurück zum Zitat Kegl, J., Cohen, H., & Poizner, H. (1999). Articulatory consequences of Parkinson’s disease: Perspectives from two modalities. Brain and Cognition, 40(2), 355–386.CrossRef Kegl, J., Cohen, H., & Poizner, H. (1999). Articulatory consequences of Parkinson’s disease: Perspectives from two modalities. Brain and Cognition, 40(2), 355–386.CrossRef
Zurück zum Zitat Kermadi, I., & Joseph, J. (1995). Activity in the caudate nucleus of monkey during spatial sequencing. Journal of Neurophysiology, 74(3), 911–933.CrossRef Kermadi, I., & Joseph, J. (1995). Activity in the caudate nucleus of monkey during spatial sequencing. Journal of Neurophysiology, 74(3), 911–933.CrossRef
Zurück zum Zitat Kimmeskamp, S., & Hennig, E. M. (2001). Heel to toe motion characteristics in Parkinson patients during free walking. Clinical Biomechanics, 16(9), 806–812.CrossRef Kimmeskamp, S., & Hennig, E. M. (2001). Heel to toe motion characteristics in Parkinson patients during free walking. Clinical Biomechanics, 16(9), 806–812.CrossRef
Zurück zum Zitat Kori, A., Miyashita, N., Kato, M., Hikosaka, O., Usui, S., & Matsumura, M. (1995). Eye movements in monkeys with local dopamine depletion in the caudate nucleus. II. Deficits in voluntary saccades. Journal of Neuroscience, 15(1), 928–941. Kori, A., Miyashita, N., Kato, M., Hikosaka, O., Usui, S., & Matsumura, M. (1995). Eye movements in monkeys with local dopamine depletion in the caudate nucleus. II. Deficits in voluntary saccades. Journal of Neuroscience, 15(1), 928–941.
Zurück zum Zitat Kotz, S. A., Frisch, S., Von Cramon, D. Y., & Friederici, A. D. (2003). Syntactic language processing: ERP lesion data on the role of the basal ganglia. Journal of the International Neuropsychological Society, 9(7), 1053–1060.CrossRef Kotz, S. A., Frisch, S., Von Cramon, D. Y., & Friederici, A. D. (2003). Syntactic language processing: ERP lesion data on the role of the basal ganglia. Journal of the International Neuropsychological Society, 9(7), 1053–1060.CrossRef
Zurück zum Zitat Kotz, S. A., Schwartze, M., & Schmidt-Kassow, M. (2009). Non-motor basal ganglia functions: A review and proposal for a model of sensory predictability in auditory language perception. Cortex, 45(8), 982–990.CrossRef Kotz, S. A., Schwartze, M., & Schmidt-Kassow, M. (2009). Non-motor basal ganglia functions: A review and proposal for a model of sensory predictability in auditory language perception. Cortex, 45(8), 982–990.CrossRef
Zurück zum Zitat Kravitz, A. V., Freeze, B. S., Parker, P. R., Kay, K., Thwin, M. T., Deisseroth, K., et al. (2010). Regulation of parkinsonian motor behaviors by optogenetic control of basal ganglia circuitry. Nature, 466(7306), 622.CrossRef Kravitz, A. V., Freeze, B. S., Parker, P. R., Kay, K., Thwin, M. T., Deisseroth, K., et al. (2010). Regulation of parkinsonian motor behaviors by optogenetic control of basal ganglia circuitry. Nature, 466(7306), 622.CrossRef
Zurück zum Zitat Kreitzer, A. C., & Malenka, R. C. (2008). Striatal plasticity and basal ganglia circuit function. Neuron, 60(4), 543–554.CrossRef Kreitzer, A. C., & Malenka, R. C. (2008). Striatal plasticity and basal ganglia circuit function. Neuron, 60(4), 543–554.CrossRef
Zurück zum Zitat Kropotov, J. D., & Etlinger, S. C. (1999). Selection of actions in the basal ganglia–thalamocortical circuits: Review and model. International Journal of Psychophysiology, 31(3), 197–217.CrossRef Kropotov, J. D., & Etlinger, S. C. (1999). Selection of actions in the basal ganglia–thalamocortical circuits: Review and model. International Journal of Psychophysiology, 31(3), 197–217.CrossRef
Zurück zum Zitat Laasonen-Balk, T., Kuikka, J., Viinamaki, H., Husso-Saastamoinen, M., Lehtonen, J., & Tiihonen, J. (1999). Striatal dopamine transporter density in major depression. Psychopharmacology (Berl), 144(3), 282–285.CrossRef Laasonen-Balk, T., Kuikka, J., Viinamaki, H., Husso-Saastamoinen, M., Lehtonen, J., & Tiihonen, J. (1999). Striatal dopamine transporter density in major depression. Psychopharmacology (Berl), 144(3), 282–285.CrossRef
Zurück zum Zitat Lena, I., Parrot, S., Deschaux, O., Muffat‐Joly, S., Sauvinet, V., Renaud, B., … Gottesmann, C. (2005). Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. Journal of Neuroscience Research, 81(6), 891–899. Lena, I., Parrot, S., Deschaux, O., Muffat‐Joly, S., Sauvinet, V., Renaud, B., … Gottesmann, C. (2005). Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. Journal of Neuroscience Research, 81(6), 891–899.
Zurück zum Zitat Levy, R., & Dubois, B. (2006). Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cerebral Cortex, 16(7), 916–928.CrossRef Levy, R., & Dubois, B. (2006). Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cerebral Cortex, 16(7), 916–928.CrossRef
Zurück zum Zitat Lewis, S. J., & Barker, R. A. (2009). A pathophysiological model of freezing of gait in Parkinson’s disease. Parkinsonism & Related Disorders, 15(5), 333–338.CrossRef Lewis, S. J., & Barker, R. A. (2009). A pathophysiological model of freezing of gait in Parkinson’s disease. Parkinsonism & Related Disorders, 15(5), 333–338.CrossRef
Zurück zum Zitat Lewis, S. J., Dove, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2004). Striatal contributions to working memory: A functional magnetic resonance imaging study in humans. European Journal of Neuroscience, 19(3), 755–760.CrossRef Lewis, S. J., Dove, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2004). Striatal contributions to working memory: A functional magnetic resonance imaging study in humans. European Journal of Neuroscience, 19(3), 755–760.CrossRef
Zurück zum Zitat Lewis, S. J., Slabosz, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2005). Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia, 43(6), 823–832.CrossRef Lewis, S. J., Slabosz, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2005). Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia, 43(6), 823–832.CrossRef
Zurück zum Zitat Lieberman, P. (1991). Uniquely human: The evolution of speech, thought, and selfless behavior. Cambridge, MA: Harvard University Press. Lieberman, P. (1991). Uniquely human: The evolution of speech, thought, and selfless behavior. Cambridge, MA: Harvard University Press.
Zurück zum Zitat Lipford, M. C., & Silber, M. H. (2012). Long-term use of pramipexole in the management of restless legs syndrome. Sleep Medicine, 13(10), 1280–1285.CrossRef Lipford, M. C., & Silber, M. H. (2012). Long-term use of pramipexole in the management of restless legs syndrome. Sleep Medicine, 13(10), 1280–1285.CrossRef
Zurück zum Zitat Lubik, S., Fogel, W., Tronnier, V., Krause, M., König, J., & Jost, W. (2006). Gait analysis in patients with advanced Parkinson disease: Different or additive effects on gait induced by levodopa and chronic STN stimulation. Journal of Neural Transmission (Vienna), 113(2), 163–173.CrossRef Lubik, S., Fogel, W., Tronnier, V., Krause, M., König, J., & Jost, W. (2006). Gait analysis in patients with advanced Parkinson disease: Different or additive effects on gait induced by levodopa and chronic STN stimulation. Journal of Neural Transmission (Vienna), 113(2), 163–173.CrossRef
Zurück zum Zitat Majsak, M. J., Kaminski, T., Gentile, A. M., & Flanagan, J. R. (1998). The reaching movements of patients with Parkinson’s disease under self-determined maximal speed and visually cued conditions. Brain: A Journal of Neurology, 121(4), 755–766.CrossRef Majsak, M. J., Kaminski, T., Gentile, A. M., & Flanagan, J. R. (1998). The reaching movements of patients with Parkinson’s disease under self-determined maximal speed and visually cued conditions. Brain: A Journal of Neurology, 121(4), 755–766.CrossRef
Zurück zum Zitat Marsden, C. (1982). The mysterious motor function of the basal ganglia: The Robert Wartenberg Lecture. Neurology. Marsden, C. (1982). The mysterious motor function of the basal ganglia: The Robert Wartenberg Lecture. Neurology.
Zurück zum Zitat Maruyama, T., & Yanagisawa, N. (2006). Cognitive impact on freezing of gait in Parkinson’s disease. Parkinsonism & Related Disorders, 12, S77–S82.CrossRef Maruyama, T., & Yanagisawa, N. (2006). Cognitive impact on freezing of gait in Parkinson’s disease. Parkinsonism & Related Disorders, 12, S77–S82.CrossRef
Zurück zum Zitat McNab, F., Leroux, G., Strand, F., Thorell, L., Bergman, S., & Klingberg, T. (2008). Common and unique components of inhibition and working memory: An fMRI, within-subjects investigation. Neuropsychologia, 46(11), 2668–2682.CrossRef McNab, F., Leroux, G., Strand, F., Thorell, L., Bergman, S., & Klingberg, T. (2008). Common and unique components of inhibition and working memory: An fMRI, within-subjects investigation. Neuropsychologia, 46(11), 2668–2682.CrossRef
Zurück zum Zitat Menon, V., Anagnoson, R. T., Glover, G. H., & Pfefferbaum, A. (2000). Basal ganglia involvement in memory-guided movement sequencing. NeuroReport, 11(16), 3641–3645.CrossRef Menon, V., Anagnoson, R. T., Glover, G. H., & Pfefferbaum, A. (2000). Basal ganglia involvement in memory-guided movement sequencing. NeuroReport, 11(16), 3641–3645.CrossRef
Zurück zum Zitat Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annals of Neurology, 59(2), 257–264.CrossRef Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annals of Neurology, 59(2), 257–264.CrossRef
Zurück zum Zitat Moreau, C., Ozsancak, C., Blatt, J. L., Derambure, P., Destee, A., & Defebvre, L. (2007). Oral festination in Parkinson’s disease: Biomechanical analysis and correlation with festination and freezing of gait. Movement Disorders, 22(10), 1503–1506.CrossRef Moreau, C., Ozsancak, C., Blatt, J. L., Derambure, P., Destee, A., & Defebvre, L. (2007). Oral festination in Parkinson’s disease: Biomechanical analysis and correlation with festination and freezing of gait. Movement Disorders, 22(10), 1503–1506.CrossRef
Zurück zum Zitat Moriizumi, T., Nakamura, Y., Tokuno, H., Kitao, Y., & Kudo, M. (1988). Topographic projections from the basal ganglia to the nucleus tegmenti pedunculopontinus pars compacta of the cat with special reference to pallidal projections. Experimental Brain Research, 71(2), 298–306.CrossRef Moriizumi, T., Nakamura, Y., Tokuno, H., Kitao, Y., & Kudo, M. (1988). Topographic projections from the basal ganglia to the nucleus tegmenti pedunculopontinus pars compacta of the cat with special reference to pallidal projections. Experimental Brain Research, 71(2), 298–306.CrossRef
Zurück zum Zitat Morris, M., Iansek, R., Matyas, T., & Summers, J. (1998). Abnormalities in the stride length-cadence relation in parkinsonian gait. Movement Disorders, 13(1), 61–69.CrossRef Morris, M., Iansek, R., Matyas, T., & Summers, J. (1998). Abnormalities in the stride length-cadence relation in parkinsonian gait. Movement Disorders, 13(1), 61–69.CrossRef
Zurück zum Zitat Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Crouse, J. J., Gupta, A., Frank, M. J., … Jahanshahi, M. (2016). Interrelations between cognitive dysfunction and motor symptoms of Parkinson’s disease: Behavioral and neural studies. Reviews in the Neurosciences. https://doi.org/10.1515/revneuro-2015-0070. Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Crouse, J. J., Gupta, A., Frank, M. J., … Jahanshahi, M. (2016). Interrelations between cognitive dysfunction and motor symptoms of Parkinson’s disease: Behavioral and neural studies. Reviews in the Neurosciences. https://​doi.​org/​10.​1515/​revneuro-2015-0070.
Zurück zum Zitat Moustafa, A. A., Herzallah, M. M., & Gluck, M. A. (2013b). Dissociating the cognitive effects of levodopa versus dopamine agonists in a neurocomputational model of learning in Parkinson’s disease. Neurodegenerative Diseases, 11(2), 102–111. https://doi.org/10.1159/000341999.CrossRef Moustafa, A. A., Herzallah, M. M., & Gluck, M. A. (2013b). Dissociating the cognitive effects of levodopa versus dopamine agonists in a neurocomputational model of learning in Parkinson’s disease. Neurodegenerative Diseases, 11(2), 102–111. https://​doi.​org/​10.​1159/​000341999.CrossRef
Zurück zum Zitat Müller, F., & Abbs, J. H. (1990). Precision grip in parkinsonian patients. Advances in Neurology, 53, 191. Müller, F., & Abbs, J. H. (1990). Precision grip in parkinsonian patients. Advances in Neurology, 53, 191.
Zurück zum Zitat Murillo-Rodríguez, E., Haro, R., Palomero-Rivero, M., Millán-Aldaco, D., & Drucker-Colín, R. (2007). Modafinil enhances extracellular levels of dopamine in the nucleus accumbens and increases wakefulness in rats. Behavioural Brain Research, 176(2), 353–357.CrossRef Murillo-Rodríguez, E., Haro, R., Palomero-Rivero, M., Millán-Aldaco, D., & Drucker-Colín, R. (2007). Modafinil enhances extracellular levels of dopamine in the nucleus accumbens and increases wakefulness in rats. Behavioural Brain Research, 176(2), 353–357.CrossRef
Zurück zum Zitat Murnaghan, G. (1961). Neurogenic disorders of the bladder in Parkinsonism. BJU International, 33(4), 403–409.CrossRef Murnaghan, G. (1961). Neurogenic disorders of the bladder in Parkinsonism. BJU International, 33(4), 403–409.CrossRef
Zurück zum Zitat Mushiake, H., & Strick, P. L. (1995). Pallidal neuron activity during sequential arm movements. Journal of Neurophysiology, 74(6), 2754–2758.CrossRef Mushiake, H., & Strick, P. L. (1995). Pallidal neuron activity during sequential arm movements. Journal of Neurophysiology, 74(6), 2754–2758.CrossRef
Zurück zum Zitat Nakahara, H., Doya, K., & Hikosaka, O. (2001). Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences—A computational approach. Journal of Cognitive Neuroscience, 13(5), 626–647.CrossRef Nakahara, H., Doya, K., & Hikosaka, O. (2001). Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences—A computational approach. Journal of Cognitive Neuroscience, 13(5), 626–647.CrossRef
Zurück zum Zitat Napier, J. R. (1956). The prehensile movements of the human hand. Bone & Joint Journal, 38(4), 902–913. Napier, J. R. (1956). The prehensile movements of the human hand. Bone & Joint Journal, 38(4), 902–913.
Zurück zum Zitat Neafsey, E. J. (1991). Prefrontal cortical control of the autonomic nervous system: Anatomical and physiological observations. Progress in Brain Research, 85, 147–166.CrossRef Neafsey, E. J. (1991). Prefrontal cortical control of the autonomic nervous system: Anatomical and physiological observations. Progress in Brain Research, 85, 147–166.CrossRef
Zurück zum Zitat Nenadic, I., Gaser, C., Volz, H.-P., Rammsayer, T., Häger, F., & Sauer, H. (2003). Processing of temporal information and the basal ganglia: New evidence from fMRI. Experimental Brain Research, 148(2), 238–246.CrossRef Nenadic, I., Gaser, C., Volz, H.-P., Rammsayer, T., Häger, F., & Sauer, H. (2003). Processing of temporal information and the basal ganglia: New evidence from fMRI. Experimental Brain Research, 148(2), 238–246.CrossRef
Zurück zum Zitat Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 67(1), 53–83.CrossRef Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 67(1), 53–83.CrossRef
Zurück zum Zitat O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38(2), 329–337.CrossRef O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38(2), 329–337.CrossRef
Zurück zum Zitat O’Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14(6), 769–776.CrossRef O’Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14(6), 769–776.CrossRef
Zurück zum Zitat Owen, A. M., Doyon, J., Dagher, A., Sadikot, A., & Evans, A. C. (1998). Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Brain: A Journal of Neurology, 121(5), 949–965.CrossRef Owen, A. M., Doyon, J., Dagher, A., Sadikot, A., & Evans, A. C. (1998). Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Brain: A Journal of Neurology, 121(5), 949–965.CrossRef
Zurück zum Zitat Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25(1), 563–593.CrossRef Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25(1), 563–593.CrossRef
Zurück zum Zitat Pan, P. M., Sato, J. R., Salum, G. A., Rohde, L. A., Gadelha, A., Zugman, A., … Stringaris, A. (2017). Ventral striatum functional connectivity as a predictor of adolescent depressive disorder in a longitudinal community-based sample. American Journal of Psychiatry, 174(11), 1112–1119. https://doi.org/10.1176/appi.ajp.2017.17040430. Pan, P. M., Sato, J. R., Salum, G. A., Rohde, L. A., Gadelha, A., Zugman, A., … Stringaris, A. (2017). Ventral striatum functional connectivity as a predictor of adolescent depressive disorder in a longitudinal community-based sample. American Journal of Psychiatry, 174(11), 1112–1119. https://​doi.​org/​10.​1176/​appi.​ajp.​2017.​17040430.
Zurück zum Zitat Pazo, J., & Medina, J. (1983). Cholinergic mechanisms within the caudate nucleus mediate changes in blood pressure. Neuropharmacology, 22(6), 717–720.CrossRef Pazo, J., & Medina, J. (1983). Cholinergic mechanisms within the caudate nucleus mediate changes in blood pressure. Neuropharmacology, 22(6), 717–720.CrossRef
Zurück zum Zitat Pazo, J. H. (1976). Caudate-putamen and globus pallidus influences on a visceral reflex. Acta physiologica latino americana, 26(4), 260–266. Pazo, J. H. (1976). Caudate-putamen and globus pallidus influences on a visceral reflex. Acta physiologica latino americana, 26(4), 260–266.
Zurück zum Zitat Porter, R. W., & Bors, E. (1971). Neurogenic bladder in Parkinsonism: Effect of thalamotomy. Journal of Neurosurgery, 34(1), 27–32.CrossRef Porter, R. W., & Bors, E. (1971). Neurogenic bladder in Parkinsonism: Effect of thalamotomy. Journal of Neurosurgery, 34(1), 27–32.CrossRef
Zurück zum Zitat Postle, B. R., & D’Esposito, M. (1999). Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: An event-related fMRI study. Cognitive Brain Research, 8(2), 107–115.CrossRef Postle, B. R., & D’Esposito, M. (1999). Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: An event-related fMRI study. Cognitive Brain Research, 8(2), 107–115.CrossRef
Zurück zum Zitat Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron, 51(3), 381–390.CrossRef Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron, 51(3), 381–390.CrossRef
Zurück zum Zitat Rascol, O., Sabatini, U., Simonetta-Moreau, M., Montastruc, J., Rascol, A., & Clanet, M. (1991). Square wave jerks in parkinsonian syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 54(7), 599–602.CrossRef Rascol, O., Sabatini, U., Simonetta-Moreau, M., Montastruc, J., Rascol, A., & Clanet, M. (1991). Square wave jerks in parkinsonian syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 54(7), 599–602.CrossRef
Zurück zum Zitat Rauch, S. L., Whalen, P. J., Savage, C. R., Curran, T., Kendrick, A., Brown, H. D., … Rosen, B. R. (1997). Striatal recruitment during an implicit sequence learning task as measured by functional magnetic resonance imaging. Human Brain Mapping, 5(2), 124-132. Rauch, S. L., Whalen, P. J., Savage, C. R., Curran, T., Kendrick, A., Brown, H. D., … Rosen, B. R. (1997). Striatal recruitment during an implicit sequence learning task as measured by functional magnetic resonance imaging. Human Brain Mapping, 5(2), 124-132.
Zurück zum Zitat Resstel, L., & Correa, F. (2006). Involvement of the medial prefrontal cortex in central cardiovascular modulation in the rat. Autonomic Neuroscience, 126, 130–138.CrossRef Resstel, L., & Correa, F. (2006). Involvement of the medial prefrontal cortex in central cardiovascular modulation in the rat. Autonomic Neuroscience, 126, 130–138.CrossRef
Zurück zum Zitat Robbins, T. W. (2007). Shifting and stopping: Fronto-striatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences, 362(1481), 917–932.CrossRef Robbins, T. W. (2007). Shifting and stopping: Fronto-striatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences, 362(1481), 917–932.CrossRef
Zurück zum Zitat Rogers, R. D. (2010). The roles of dopamine and serotonin in decision making: Evidence from pharmacological experiments in humans. Neuropsychopharmacology, 36(1), 114–132.CrossRef Rogers, R. D. (2010). The roles of dopamine and serotonin in decision making: Evidence from pharmacological experiments in humans. Neuropsychopharmacology, 36(1), 114–132.CrossRef
Zurück zum Zitat Russell, V., Allin, R., Lamm, M., & Taljaard, J. (1992). Regional distribution of monoamines and dopamine D1-and D2-receptors in the striatum of the rat. Neurochemical Research, 17(4), 387–395.CrossRef Russell, V., Allin, R., Lamm, M., & Taljaard, J. (1992). Regional distribution of monoamines and dopamine D1-and D2-receptors in the striatum of the rat. Neurochemical Research, 17(4), 387–395.CrossRef
Zurück zum Zitat Sahyoun, C., Floyer-Lea, A., Johansen-Berg, H., & Matthews, P. (2004). Towards an understanding of gait control: Brain activation during the anticipation, preparation and execution of foot movements. Neuroimage, 21(2), 568–575.CrossRef Sahyoun, C., Floyer-Lea, A., Johansen-Berg, H., & Matthews, P. (2004). Towards an understanding of gait control: Brain activation during the anticipation, preparation and execution of foot movements. Neuroimage, 21(2), 568–575.CrossRef
Zurück zum Zitat Saint-Cyr, J. A. (2003). Frontal-striatal circuit functions: Context, sequence, and consequence. Journal of the International Neuropsychological Society, 9(1), 103–127.CrossRef Saint-Cyr, J. A. (2003). Frontal-striatal circuit functions: Context, sequence, and consequence. Journal of the International Neuropsychological Society, 9(1), 103–127.CrossRef
Zurück zum Zitat Santens, P., De Letter, M., Van Borsel, J., De Reuck, J., & Caemaert, J. (2003). Lateralized effects of subthalamic nucleus stimulation on different aspects of speech in Parkinson’s disease. Brain and Language, 87(2), 253–258.CrossRef Santens, P., De Letter, M., Van Borsel, J., De Reuck, J., & Caemaert, J. (2003). Lateralized effects of subthalamic nucleus stimulation on different aspects of speech in Parkinson’s disease. Brain and Language, 87(2), 253–258.CrossRef
Zurück zum Zitat Sato, M., & Hikosaka, O. (2002). Role of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement. Journal of Neuroscience, 22(6), 2363–2373. Sato, M., & Hikosaka, O. (2002). Role of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement. Journal of Neuroscience, 22(6), 2363–2373.
Zurück zum Zitat Sawaguchi, T., & Goldman-Rakic, P. S. (1994). The role of D1-dopamine receptor in working memory: Local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. Journal of Neurophysiology, 71(2), 515–528.CrossRef Sawaguchi, T., & Goldman-Rakic, P. S. (1994). The role of D1-dopamine receptor in working memory: Local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. Journal of Neurophysiology, 71(2), 515–528.CrossRef
Zurück zum Zitat Schaal, S., & Schweighofer, N. (2005). Computational motor control in humans and robots. Current Opinion in Neurobiology, 15(6), 675–682.CrossRef Schaal, S., & Schweighofer, N. (2005). Computational motor control in humans and robots. Current Opinion in Neurobiology, 15(6), 675–682.CrossRef
Zurück zum Zitat Schirmer, A. (2004). Timing speech: A review of lesion and neuroimaging findings. Cognitive Brain Research, 21(2), 269–287.MathSciNetCrossRef Schirmer, A. (2004). Timing speech: A review of lesion and neuroimaging findings. Cognitive Brain Research, 21(2), 269–287.MathSciNetCrossRef
Zurück zum Zitat Schneider, F., Habel, U., Volkmann, J., Regel, S., Kornischka, J., Sturm, V., & Freund, H. J. (2003). Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease. Archives of General Psychiatry, 60(3), 296–302. yoa10144 [pii]. Schneider, F., Habel, U., Volkmann, J., Regel, S., Kornischka, J., Sturm, V., & Freund, H. J. (2003). Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease. Archives of General Psychiatry, 60(3), 296–302. yoa10144 [pii].
Zurück zum Zitat Senard, J.-M., Brefel-Courbon, C., Rascol, O., & Montastruc, J.-L. (2001). Orthostatic hypotension in patients with Parkinson’s disease. Drugs and Aging, 18(7), 495–505.CrossRef Senard, J.-M., Brefel-Courbon, C., Rascol, O., & Montastruc, J.-L. (2001). Orthostatic hypotension in patients with Parkinson’s disease. Drugs and Aging, 18(7), 495–505.CrossRef
Zurück zum Zitat Seymour, B., Daw, N., Dayan, P., Singer, T., & Dolan, R. (2007). Differential encoding of losses and gains in the human striatum. Journal of Neuroscience, 27(18), 4826–4831.CrossRef Seymour, B., Daw, N., Dayan, P., Singer, T., & Dolan, R. (2007). Differential encoding of losses and gains in the human striatum. Journal of Neuroscience, 27(18), 4826–4831.CrossRef
Zurück zum Zitat Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185(3), 359–381.CrossRef Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185(3), 359–381.CrossRef
Zurück zum Zitat Shine, J. M., Matar, E., Ward, P. B., Bolitho, S. J., Pearson, M., Naismith, S. L., & Lewis, S. J. (2013). Differential neural activation patterns in patients with Parkinson’s disease and freezing of gait in response to concurrent cognitive and motor load. PLoS One, 8(1), e52602. Shine, J. M., Matar, E., Ward, P. B., Bolitho, S. J., Pearson, M., Naismith, S. L., & Lewis, S. J. (2013). Differential neural activation patterns in patients with Parkinson’s disease and freezing of gait in response to concurrent cognitive and motor load. PLoS One, 8(1), e52602.
Zurück zum Zitat Smith, Y., Beyan, M. D., Shink, E., & Bolam, J. P. (1998). Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience (Oxford), 86, 353–388. Smith, Y., Beyan, M. D., Shink, E., & Bolam, J. P. (1998). Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience (Oxford), 86, 353–388.
Zurück zum Zitat Soliveri, P., Brown, R., Jahanshahi, M., Caraceni, T., & Marsden, C. (1997). Learning manual pursuit tracking skills in patients with Parkinson’s disease. Brain: A Journal of Neurology, 120(8), 1325–1337.CrossRef Soliveri, P., Brown, R., Jahanshahi, M., Caraceni, T., & Marsden, C. (1997). Learning manual pursuit tracking skills in patients with Parkinson’s disease. Brain: A Journal of Neurology, 120(8), 1325–1337.CrossRef
Zurück zum Zitat Subramanian, L., Hindle, J. V., Jackson, M. C., & Linden, D. E. (2010). Dopamine boosts memory for angry faces in Parkinson’s disease. Movement Disorders, 25(16), 2792–2799.CrossRef Subramanian, L., Hindle, J. V., Jackson, M. C., & Linden, D. E. (2010). Dopamine boosts memory for angry faces in Parkinson’s disease. Movement Disorders, 25(16), 2792–2799.CrossRef
Zurück zum Zitat Svennilson, E., Torvik, A., Lowe, R., & Leksell, L. (1960). Treatment of parkinsonism by stereotactic thermolesions in the pallidal region. A clinical evaluation of 81 cases. Acta Psychiatrica Scandinavica, 35(3), 358–377.CrossRef Svennilson, E., Torvik, A., Lowe, R., & Leksell, L. (1960). Treatment of parkinsonism by stereotactic thermolesions in the pallidal region. A clinical evaluation of 81 cases. Acta Psychiatrica Scandinavica, 35(3), 358–377.CrossRef
Zurück zum Zitat Takakusaki, K., Habaguchi, T., Ohtinata-Sugimoto, J., Saitoh, K., & Sakamoto, T. (2003). Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: A new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience, 119(1), 293–308.CrossRef Takakusaki, K., Habaguchi, T., Ohtinata-Sugimoto, J., Saitoh, K., & Sakamoto, T. (2003). Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: A new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience, 119(1), 293–308.CrossRef
Zurück zum Zitat Takakusaki, K., Ohta, R., & Harada, H. (2007). Modulation of the excitability of hindlimb motor neurons during fictive locomotion by the basal ganglia efferents to the brainstem in decerebrate cats. Paper Presented at the Social Neuroscience Abstract. Takakusaki, K., Ohta, R., & Harada, H. (2007). Modulation of the excitability of hindlimb motor neurons during fictive locomotion by the basal ganglia efferents to the brainstem in decerebrate cats. Paper Presented at the Social Neuroscience Abstract.
Zurück zum Zitat Takakusaki, K., Saitoh, K., Harada, H., & Kashiwayanagi, M. (2004). Role of basal ganglia–brainstem pathways in the control of motor behaviors. Neuroscience Research, 50(2), 137–151.CrossRef Takakusaki, K., Saitoh, K., Harada, H., & Kashiwayanagi, M. (2004). Role of basal ganglia–brainstem pathways in the control of motor behaviors. Neuroscience Research, 50(2), 137–151.CrossRef
Zurück zum Zitat Takakusaki, K., Tomita, N., & Yano, M. (2008). Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction. Journal of Neurology, 255, 19–29.CrossRef Takakusaki, K., Tomita, N., & Yano, M. (2008). Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction. Journal of Neurology, 255, 19–29.CrossRef
Zurück zum Zitat Tan, E. (2003). Piribedil-induced sleep attacks in Parkinson’s disease. Fundamental & Clinical Pharmacology, 17(1), 117–119.CrossRef Tan, E. (2003). Piribedil-induced sleep attacks in Parkinson’s disease. Fundamental & Clinical Pharmacology, 17(1), 117–119.CrossRef
Zurück zum Zitat Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2004). Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neuroscience, 7(8), 887–893.CrossRef Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2004). Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neuroscience, 7(8), 887–893.CrossRef
Zurück zum Zitat Teulings, H.-L., Contreras-Vidal, J. L., Stelmach, G. E., & Adler, C. H. (1997). Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Experimental Neurology, 146(1), 159–170.CrossRef Teulings, H.-L., Contreras-Vidal, J. L., Stelmach, G. E., & Adler, C. H. (1997). Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Experimental Neurology, 146(1), 159–170.CrossRef
Zurück zum Zitat Tomasi, D., Chang, L., Caparelli, E., & Ernst, T. (2007). Different activation patterns for working memory load and visual attention load. Brain Research, 1132, 158–165.CrossRef Tomasi, D., Chang, L., Caparelli, E., & Ernst, T. (2007). Different activation patterns for working memory load and visual attention load. Brain Research, 1132, 158–165.CrossRef
Zurück zum Zitat Tucha, O., Mecklinger, L., Thome, J., Reiter, A., Alders, G., Sartor, H., … Lange, K. (2006). Kinematic analysis of dopaminergic effects on skilled handwriting movements in Parkinson’s disease. Journal of Neural Transmission (Vienna), 113(5), 609–623. Tucha, O., Mecklinger, L., Thome, J., Reiter, A., Alders, G., Sartor, H., … Lange, K. (2006). Kinematic analysis of dopaminergic effects on skilled handwriting movements in Parkinson’s disease. Journal of Neural Transmission (Vienna), 113(5), 609–623.
Zurück zum Zitat Ungless, M. A. (2004). Dopamine: The salient issue. Trends in Neurosciences, 27(12), 702–706.CrossRef Ungless, M. A. (2004). Dopamine: The salient issue. Trends in Neurosciences, 27(12), 702–706.CrossRef
Zurück zum Zitat Van Buren, J., Li, C., & Ojemann, G. (1966). The fronto-striatal arrest response in man. Electroencephalography and Clinical Neurophysiology, 21(2), 114–130.CrossRef Van Buren, J., Li, C., & Ojemann, G. (1966). The fronto-striatal arrest response in man. Electroencephalography and Clinical Neurophysiology, 21(2), 114–130.CrossRef
Zurück zum Zitat Verberne, A. J., & Owens, N. C. (1998). Cortical modulation of thecardiovascular system. Progress in Neurobiology, 54(2), 149–168.CrossRef Verberne, A. J., & Owens, N. C. (1998). Cortical modulation of thecardiovascular system. Progress in Neurobiology, 54(2), 149–168.CrossRef
Zurück zum Zitat Wang, E., Metman, L. V., Bakay, R., Arzbaecher, J., & Bernard, B. (2003). The effect of unilateral electrostimulation of the subthalamic nucleus on respiratory/phonatory subsystems of speech production in Parkinson’s disease—A preliminary report. Clinical Linguistics & Phonetics, 17(4–5), 283–289.CrossRef Wang, E., Metman, L. V., Bakay, R., Arzbaecher, J., & Bernard, B. (2003). The effect of unilateral electrostimulation of the subthalamic nucleus on respiratory/phonatory subsystems of speech production in Parkinson’s disease—A preliminary report. Clinical Linguistics & Phonetics, 17(4–5), 283–289.CrossRef
Zurück zum Zitat Wolfe, V., Garvin, J., Bacon, M., & Waldrop, W. (1975). Speech changes in Parkinson’s disease during treatment with L-dopa. Journal of Communication Disorders, 8(3), 271–279.CrossRef Wolfe, V., Garvin, J., Bacon, M., & Waldrop, W. (1975). Speech changes in Parkinson’s disease during treatment with L-dopa. Journal of Communication Disorders, 8(3), 271–279.CrossRef
Zurück zum Zitat Zahrt, J., Taylor, J. R., Mathew, R. G., & Arnsten, A. F. (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. Journal of Neuroscience, 17(21), 8528–8535. Zahrt, J., Taylor, J. R., Mathew, R. G., & Arnsten, A. F. (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. Journal of Neuroscience, 17(21), 8528–8535.
Metadaten
Titel
The Motor, Cognitive, Affective, and Autonomic Functions of the Basal Ganglia
verfasst von
Ahmed A. Moustafa
Alekhya Mandali
Pragathi Priyadharsini Balasubramani
V. Srinivasa Chakravarthy
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8494-2_3

Neuer Inhalt