Skip to main content
Erschienen in: Engineering with Computers 4/2019

08.12.2018 | Original Article

The numerical solution of fractional differential equations using the Volterra integral equation method based on thin plate splines

verfasst von: Pouria Assari, Salvatore Cuomo

Erschienen in: Engineering with Computers | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Finding the approximate solution of differential equations, including non-integer order derivatives, is one of the most important problems in numerical fractional calculus. The main idea of the current paper is to obtain a numerical scheme for solving fractional differential equations of the second order. To handle the method, we first convert these types of differential equations to linear fractional Volterra integral equations of the second kind. Afterward, the solutions of the mentioned Volterra integral equations are estimated using the discrete collocation method together with thin plate splines as a type of free-shape parameter radial basis functions. Since the scheme does not need any background meshes, it can be recognized as a meshless method. The proposed approach has a simple and computationally attractive algorithm. Error analysis is also studied for the presented method. Finally, the reliability and efficiency of the new technique are tested over several fractional differential equations and obtained results confirm the theoretical error estimates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New YorkMATH Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New YorkMATH
2.
Zurück zum Zitat Mandelbrot B (1967) Some noises with 1/f spectrum, a bridge between direct current and white noise. IEEE Trans Inf Theory 13(2):289–298MATHCrossRef Mandelbrot B (1967) Some noises with 1/f spectrum, a bridge between direct current and white noise. IEEE Trans Inf Theory 13(2):289–298MATHCrossRef
3.
Zurück zum Zitat Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev 50:15–67CrossRef Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev 50:15–67CrossRef
4.
Zurück zum Zitat Mainardi F (1997) Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpmten A, Mainardi F (eds) Fractals and fractional calculus in continuum mechanics, CISM Courses and Lectures. Springer, Vienna Mainardi F (1997) Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpmten A, Mainardi F (eds) Fractals and fractional calculus in continuum mechanics, CISM Courses and Lectures. Springer, Vienna
6.
Zurück zum Zitat Suarez LE, Shokooh A (1997) An eigenvector expansion method for the solution of motion containing fractional derivatives. J Appl Mech 64(3):629–635MathSciNetMATHCrossRef Suarez LE, Shokooh A (1997) An eigenvector expansion method for the solution of motion containing fractional derivatives. J Appl Mech 64(3):629–635MathSciNetMATHCrossRef
7.
Zurück zum Zitat Heaviside O (1971) Electromagnetic theory. Chelsea, NewYorkMATH Heaviside O (1971) Electromagnetic theory. Chelsea, NewYorkMATH
8.
Zurück zum Zitat Panda R, Dash M (2006) Fractional generalized splines and signal processing. Signal Process 86:2340–2350MATHCrossRef Panda R, Dash M (2006) Fractional generalized splines and signal processing. Signal Process 86:2340–2350MATHCrossRef
9.
Zurück zum Zitat Bohannan GW (2008) Analog fractional order controller in temperature and motor control applications. J Vib Control 14:1487–1498MathSciNetCrossRef Bohannan GW (2008) Analog fractional order controller in temperature and motor control applications. J Vib Control 14:1487–1498MathSciNetCrossRef
10.
Zurück zum Zitat Idrees A, Rehman M, Saeed U (2017) A quadrature method for numerical solutions of fractional differential equations. Appl Math Comput 307:38–49MathSciNetMATH Idrees A, Rehman M, Saeed U (2017) A quadrature method for numerical solutions of fractional differential equations. Appl Math Comput 307:38–49MathSciNetMATH
11.
Zurück zum Zitat Sheu L-J, Chen H-K, Chen J-H, Tam L-M (1999) Chaotic dynamics of the fractionally damped Duffing equation. Chaos Soliton Fract 15(2):86–90MATH Sheu L-J, Chen H-K, Chen J-H, Tam L-M (1999) Chaotic dynamics of the fractionally damped Duffing equation. Chaos Soliton Fract 15(2):86–90MATH
12.
Zurück zum Zitat Narahari Achar BN, Hanneken JW, Enck T, Clarke T (2018) Dynamics ofthe fractional oscillator. Phys A 297:361–367 Narahari Achar BN, Hanneken JW, Enck T, Clarke T (2018) Dynamics ofthe fractional oscillator. Phys A 297:361–367
13.
Zurück zum Zitat Chow TS (2005) Fractional dynamics of interfaces between soft-nanoparticles and rough substrates. Phys Lett A 342:148–155CrossRef Chow TS (2005) Fractional dynamics of interfaces between soft-nanoparticles and rough substrates. Phys Lett A 342:148–155CrossRef
14.
Zurück zum Zitat He JH (1999) Some applications of nonlinear fractional differential equations and their approximations. Bull Sci Technol 15(2):86–90 He JH (1999) Some applications of nonlinear fractional differential equations and their approximations. Bull Sci Technol 15(2):86–90
15.
Zurück zum Zitat Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210MATHCrossRef Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210MATHCrossRef
16.
Zurück zum Zitat Bagley RL, Torvik PJ (1983) Fractional calculus-a different approach to the analysis of viscoe1astically damped structures. AIAA J 21(5):741–748MATHCrossRef Bagley RL, Torvik PJ (1983) Fractional calculus-a different approach to the analysis of viscoe1astically damped structures. AIAA J 21(5):741–748MATHCrossRef
17.
Zurück zum Zitat Abdulaziz O, Hashim I, Momani S (2008) Solving systems of fractional differential equations by homotopy-perturbation method. Phys Lett A 372:451–459MathSciNetMATHCrossRef Abdulaziz O, Hashim I, Momani S (2008) Solving systems of fractional differential equations by homotopy-perturbation method. Phys Lett A 372:451–459MathSciNetMATHCrossRef
18.
Zurück zum Zitat Chen Y, Yi M, Yu C (2012) Error analysis for numerical solution of fractional differential equation by Haar wavelets method. J Comput Sci 3:367–373CrossRef Chen Y, Yi M, Yu C (2012) Error analysis for numerical solution of fractional differential equation by Haar wavelets method. J Comput Sci 3:367–373CrossRef
19.
Zurück zum Zitat Daftardar-Gejji V, Jafari H (2007) Solving a multi-order fractional differential equation using adomian decomposition. Appl Math Comput 189:541–548MathSciNetMATH Daftardar-Gejji V, Jafari H (2007) Solving a multi-order fractional differential equation using adomian decomposition. Appl Math Comput 189:541–548MathSciNetMATH
20.
Zurück zum Zitat Diethelm K, Walz G (1997) Numerical solution of fractional order differential equations by extrapolation. Numer Algorithms 16:231–253MathSciNetMATHCrossRef Diethelm K, Walz G (1997) Numerical solution of fractional order differential equations by extrapolation. Numer Algorithms 16:231–253MathSciNetMATHCrossRef
21.
Zurück zum Zitat Diethelm K, Ford NG, Freed AD (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29:3–22MathSciNetMATHCrossRef Diethelm K, Ford NG, Freed AD (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29:3–22MathSciNetMATHCrossRef
22.
Zurück zum Zitat Hashim I, Abdulaziz O, Momani S (2009) Homotopy analysis method for fractional IVPs. Commun Nonlinear Sci Numer Simul 14:674–684MathSciNetMATHCrossRef Hashim I, Abdulaziz O, Momani S (2009) Homotopy analysis method for fractional IVPs. Commun Nonlinear Sci Numer Simul 14:674–684MathSciNetMATHCrossRef
23.
Zurück zum Zitat Lubich C (1985) Fractional linear multistep methods for Abel Volterra integral equations of the second kind. Math Comput 45:463–469MathSciNetMATHCrossRef Lubich C (1985) Fractional linear multistep methods for Abel Volterra integral equations of the second kind. Math Comput 45:463–469MathSciNetMATHCrossRef
24.
Zurück zum Zitat Odibat Z, Momani S, Erturk VS (2008) Generalized differential transform method: application to differential equations of fractional order. Appl Math Comput 197:467–477MathSciNetMATH Odibat Z, Momani S, Erturk VS (2008) Generalized differential transform method: application to differential equations of fractional order. Appl Math Comput 197:467–477MathSciNetMATH
26.
Zurück zum Zitat Zhang Y (2009) A finite difference method for fractional partial differential equations. Appl Math Comput 215:524–529MathSciNetMATH Zhang Y (2009) A finite difference method for fractional partial differential equations. Appl Math Comput 215:524–529MathSciNetMATH
27.
Zurück zum Zitat Mashayekhi S, Razzaghi M (2016) Numerical solution of distributed order fractional differential equations by hybrid functions. J Comput Phys 315:169–181MathSciNetMATHCrossRef Mashayekhi S, Razzaghi M (2016) Numerical solution of distributed order fractional differential equations by hybrid functions. J Comput Phys 315:169–181MathSciNetMATHCrossRef
28.
Zurück zum Zitat Yang F, Yan L (2015) The method of approximate particular solutions for the time-fractional diffusion equation with a non-local boundary condition. Comput Math Appl 70:254–264MathSciNetCrossRef Yang F, Yan L (2015) The method of approximate particular solutions for the time-fractional diffusion equation with a non-local boundary condition. Comput Math Appl 70:254–264MathSciNetCrossRef
29.
Zurück zum Zitat Zhang Y (2009) A finite difference method for fractional partial differential equations. Appl Math Comput 215:524–529MathSciNetMATH Zhang Y (2009) A finite difference method for fractional partial differential equations. Appl Math Comput 215:524–529MathSciNetMATH
30.
Zurück zum Zitat Aceto L, Magherini C, Novati P (2014) Fractional convolution quadrature based on generalized Adams methods. Calcolo 51:441–463MathSciNetMATHCrossRef Aceto L, Magherini C, Novati P (2014) Fractional convolution quadrature based on generalized Adams methods. Calcolo 51:441–463MathSciNetMATHCrossRef
31.
Zurück zum Zitat El-Ajou A, Arqub OA, Al-Smadi M (2015) A general form of the generalized Taylor formula with some applications. Appl Math Comput 256:851–859MathSciNetMATH El-Ajou A, Arqub OA, Al-Smadi M (2015) A general form of the generalized Taylor formula with some applications. Appl Math Comput 256:851–859MathSciNetMATH
32.
Zurück zum Zitat Lepik U (2009) Solving fractional integral equations by the Haar wavelet method. Appl Math Comput 214:468–478MathSciNetMATH Lepik U (2009) Solving fractional integral equations by the Haar wavelet method. Appl Math Comput 214:468–478MathSciNetMATH
33.
Zurück zum Zitat Baleanu D, Ma XJ, Srivastava HM, Yang XJ (2013) A new Neumann series method for solving a family of local fractional Fredholm and Volterra integral equations. Math Probl Eng 2013:1–7 Baleanu D, Ma XJ, Srivastava HM, Yang XJ (2013) A new Neumann series method for solving a family of local fractional Fredholm and Volterra integral equations. Math Probl Eng 2013:1–7
34.
Zurück zum Zitat Moghadam MM, Mollahasani N (2016) Two new operational methods for solving a kind of fractional Volterra integral equations. Asian Eur J Math 9:1–13MathSciNetMATH Moghadam MM, Mollahasani N (2016) Two new operational methods for solving a kind of fractional Volterra integral equations. Asian Eur J Math 9:1–13MathSciNetMATH
35.
Zurück zum Zitat Adibi H, Eshaghi J, Kazem S (2016) Solution of nonlinear weakly singular Volterra integral equations using the fractional-order Legendre functions and pseudospectral method. Math Methods Appl Sci 39:3411–3425MathSciNetMATHCrossRef Adibi H, Eshaghi J, Kazem S (2016) Solution of nonlinear weakly singular Volterra integral equations using the fractional-order Legendre functions and pseudospectral method. Math Methods Appl Sci 39:3411–3425MathSciNetMATHCrossRef
36.
Zurück zum Zitat Najafalizadeh S, Ezzati R (2016) Numerical methods for solving two-dimensional nonlinear integral equations of fractional order by using two-dimensional block pulse operational matrix. Appl Math Comput 280:46–56MathSciNetMATH Najafalizadeh S, Ezzati R (2016) Numerical methods for solving two-dimensional nonlinear integral equations of fractional order by using two-dimensional block pulse operational matrix. Appl Math Comput 280:46–56MathSciNetMATH
37.
Zurück zum Zitat Asgari M, Ezzati R (2017) Using operational matrix of two-dimensional bernstein polynomials for solving two-dimensional integral equations of fractional order. Appl Math Comput 307:290–298MathSciNetMATH Asgari M, Ezzati R (2017) Using operational matrix of two-dimensional bernstein polynomials for solving two-dimensional integral equations of fractional order. Appl Math Comput 307:290–298MathSciNetMATH
38.
Zurück zum Zitat Mollahasani N, Saeedi H, Moghadam MM, Chuev GN (2011) A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Commun Nonlinear Sci Numer Simul 16:1154–1163MathSciNetMATHCrossRef Mollahasani N, Saeedi H, Moghadam MM, Chuev GN (2011) A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Commun Nonlinear Sci Numer Simul 16:1154–1163MathSciNetMATHCrossRef
39.
Zurück zum Zitat Zhu L, Fan Q (2012) Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet. Commun Nonlinear Sci Numer Simul 17:2333–2341MathSciNetMATHCrossRef Zhu L, Fan Q (2012) Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet. Commun Nonlinear Sci Numer Simul 17:2333–2341MathSciNetMATHCrossRef
40.
Zurück zum Zitat Rawashdeh EA (2006) Numerical solution of fractional integro-differential equations by collocation method. Appl Math Comput 176:1–6MathSciNetMATH Rawashdeh EA (2006) Numerical solution of fractional integro-differential equations by collocation method. Appl Math Comput 176:1–6MathSciNetMATH
41.
Zurück zum Zitat Yang C (2011) Numerical solution of nonlinear Fredholm integro-differential equations of fractional order by using hybrid of block-pulse functions and Chebyshev polynomials. Math Probl Eng 1–12:2011 Yang C (2011) Numerical solution of nonlinear Fredholm integro-differential equations of fractional order by using hybrid of block-pulse functions and Chebyshev polynomials. Math Probl Eng 1–12:2011
42.
Zurück zum Zitat Mirzaee F, Samadyar N (2017) Application of orthonormal Bernstein polynomials to construct a efficient scheme for solving fractional stochastic integro-differential equation. Optik 132:262–273CrossRef Mirzaee F, Samadyar N (2017) Application of orthonormal Bernstein polynomials to construct a efficient scheme for solving fractional stochastic integro-differential equation. Optik 132:262–273CrossRef
44.
Zurück zum Zitat Cuomo S, Galletti A, Giunta G, Marcellino L (2017) Reconstruction of implicit curves and surfaces via RBF interpolation. Appl Numer Math 116:157–171MathSciNetMATHCrossRef Cuomo S, Galletti A, Giunta G, Marcellino L (2017) Reconstruction of implicit curves and surfaces via RBF interpolation. Appl Numer Math 116:157–171MathSciNetMATHCrossRef
45.
Zurück zum Zitat Cuomo S, Galletti A, Giunta G, Starace A (2013) Surface reconstruction from scattered point via RBF interpolation on GPU. In: 2013 Federated Conference on computer science and information systems, pp 433–440 Cuomo S, Galletti A, Giunta G, Starace A (2013) Surface reconstruction from scattered point via RBF interpolation on GPU. In: 2013 Federated Conference on computer science and information systems, pp 433–440
46.
Zurück zum Zitat Wendland H (2005) Scattered data approximation. Cambridge University Press, New YorkMATH Wendland H (2005) Scattered data approximation. Cambridge University Press, New YorkMATH
47.
Zurück zum Zitat Feng WZ, Yang K, Cui M, Gao XW (2016) Analytically-integrated radial integration BEM for solving three-dimensional transient heat conduction problems. Int Commun Heat Mass Transf 79:21–30CrossRef Feng WZ, Yang K, Cui M, Gao XW (2016) Analytically-integrated radial integration BEM for solving three-dimensional transient heat conduction problems. Int Commun Heat Mass Transf 79:21–30CrossRef
48.
Zurück zum Zitat Gao XW, Zhang Ch, Guo L (2007) Boundary-only element solutions of 2D and 3D nonlinear and nonhomogeneous elastic problems. Eng Anal Bound Elem 31:974–982MATHCrossRef Gao XW, Zhang Ch, Guo L (2007) Boundary-only element solutions of 2D and 3D nonlinear and nonhomogeneous elastic problems. Eng Anal Bound Elem 31:974–982MATHCrossRef
49.
Zurück zum Zitat Duchon J (1977) Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Springer, Berlin, Heidelberg, pp 85–100MATH Duchon J (1977) Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Springer, Berlin, Heidelberg, pp 85–100MATH
51.
Zurück zum Zitat Wahba G (1979) Convergence rate of “thin plate” smoothing splines when the data are noisy (preliminary report). Springer Lecture Notes in Mathematics, vol 757, pp 233–245 Wahba G (1979) Convergence rate of “thin plate” smoothing splines when the data are noisy (preliminary report). Springer Lecture Notes in Mathematics, vol 757, pp 233–245
52.
Zurück zum Zitat Assari P, Adibi H, Dehghan M (2013) A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J Comput Appl Math 239(1):72–92MathSciNetMATHCrossRef Assari P, Adibi H, Dehghan M (2013) A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J Comput Appl Math 239(1):72–92MathSciNetMATHCrossRef
53.
Zurück zum Zitat Assari P, Dehghan M (2017) A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions. Eur Phys J Plus 132:1–23MATHCrossRef Assari P, Dehghan M (2017) A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions. Eur Phys J Plus 132:1–23MATHCrossRef
54.
Zurück zum Zitat Assari P, Dehghan M (2017) The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision. Eng Comput 33:853–870CrossRef Assari P, Dehghan M (2017) The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision. Eng Comput 33:853–870CrossRef
55.
Zurück zum Zitat Assari P, Adibi H, Dehghan M (2014) The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis. Appl Numer Math 81:76–93MathSciNetMATHCrossRef Assari P, Adibi H, Dehghan M (2014) The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis. Appl Numer Math 81:76–93MathSciNetMATHCrossRef
56.
Zurück zum Zitat Assari P, Adibi H, Dehghan M (2014) A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numer Algorithm 67(2):423–455MathSciNetMATHCrossRef Assari P, Adibi H, Dehghan M (2014) A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numer Algorithm 67(2):423–455MathSciNetMATHCrossRef
57.
58.
Zurück zum Zitat Dehghan M, Salehi R (2012) The numerical solution of the non-linear integro-differential equations based on the meshless method. J Comput Appl Math 236(9):2367–2377MathSciNetMATHCrossRef Dehghan M, Salehi R (2012) The numerical solution of the non-linear integro-differential equations based on the meshless method. J Comput Appl Math 236(9):2367–2377MathSciNetMATHCrossRef
59.
Zurück zum Zitat Assari P, Adibi H, Dehghan M (2014) A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels. J Comput Appl Math 267:160–181MathSciNetMATHCrossRef Assari P, Adibi H, Dehghan M (2014) A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels. J Comput Appl Math 267:160–181MathSciNetMATHCrossRef
60.
Zurück zum Zitat Assari P, Dehghan M (2018) Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method. Appl Numer Math 123:137–158MathSciNetMATHCrossRef Assari P, Dehghan M (2018) Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method. Appl Numer Math 123:137–158MathSciNetMATHCrossRef
61.
Zurück zum Zitat Assari P, Dehghan M (2018) A meshless Galerkin scheme for the approximate solution of nonlinear logarithmic boundary integral equations utilizing radial basis functions. J Comput Appl Math 333:362–381MathSciNetMATHCrossRef Assari P, Dehghan M (2018) A meshless Galerkin scheme for the approximate solution of nonlinear logarithmic boundary integral equations utilizing radial basis functions. J Comput Appl Math 333:362–381MathSciNetMATHCrossRef
62.
Zurück zum Zitat Arqub OA, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl Math Comput 219(17):8938–8948MathSciNetMATH Arqub OA, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl Math Comput 219(17):8938–8948MathSciNetMATH
63.
Zurück zum Zitat Arqub OA, Al-Smadi M (2014) Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput 243(15):911–922MathSciNetMATH Arqub OA, Al-Smadi M (2014) Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput 243(15):911–922MathSciNetMATH
64.
Zurück zum Zitat Arqub OA (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput Appl 82(7):1591–1610CrossRef Arqub OA (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput Appl 82(7):1591–1610CrossRef
65.
Zurück zum Zitat Shawagfeh N, Arqub OA, Momani SM (2014) Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method. J Comput Anal Appl 16(4):750–762MathSciNetMATH Shawagfeh N, Arqub OA, Momani SM (2014) Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method. J Comput Anal Appl 16(4):750–762MathSciNetMATH
66.
Zurück zum Zitat Srivastava HM, Kilbas AA, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, San DiegoMATH Srivastava HM, Kilbas AA, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, San DiegoMATH
67.
Zurück zum Zitat Podlubeny I (1999) Fractional differential equations. Academic Press, San Diego, California Podlubeny I (1999) Fractional differential equations. Academic Press, San Diego, California
68.
Zurück zum Zitat Fasshauer GE (2005) Meshfree methods. In: Handbook of theoretical and computational nanotechnology. American Scientific Publishers, Valencia Fasshauer GE (2005) Meshfree methods. In: Handbook of theoretical and computational nanotechnology. American Scientific Publishers, Valencia
69.
Zurück zum Zitat Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, CambridgeMATHCrossRef Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, CambridgeMATHCrossRef
70.
Zurück zum Zitat Narcowich FJ, Sivakumar N, Ward JD (1994) On condition numbers associated with radial-function interpolation. J Math Anal Appl 186(2):457–485MathSciNetMATHCrossRef Narcowich FJ, Sivakumar N, Ward JD (1994) On condition numbers associated with radial-function interpolation. J Math Anal Appl 186(2):457–485MathSciNetMATHCrossRef
71.
Zurück zum Zitat Fang W, Wang Y, Xu Y (2004) An implementation of fast wavelet Galerkin methods for integral equations of the second kind. J Sci Comput 20(2):277–302MathSciNetMATHCrossRef Fang W, Wang Y, Xu Y (2004) An implementation of fast wavelet Galerkin methods for integral equations of the second kind. J Sci Comput 20(2):277–302MathSciNetMATHCrossRef
72.
Zurück zum Zitat Kaneko H, Xu Y (1994) Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math Comput 62(206):739–753MathSciNetMATHCrossRef Kaneko H, Xu Y (1994) Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math Comput 62(206):739–753MathSciNetMATHCrossRef
73.
Zurück zum Zitat Bejancu A Jr (1999) Local accuracy for radial basis function interpolation on finite uniform grids. J Approx Theory 99(2):242–257MathSciNetMATHCrossRef Bejancu A Jr (1999) Local accuracy for radial basis function interpolation on finite uniform grids. J Approx Theory 99(2):242–257MathSciNetMATHCrossRef
74.
Zurück zum Zitat Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, CambridgeMATHCrossRef Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, CambridgeMATHCrossRef
75.
Zurück zum Zitat Zhang P, Zhang Y (2000) Wavelet method for boundary integral equations. J Comput Math 18(1):25–42MathSciNetMATH Zhang P, Zhang Y (2000) Wavelet method for boundary integral equations. J Comput Math 18(1):25–42MathSciNetMATH
Metadaten
Titel
The numerical solution of fractional differential equations using the Volterra integral equation method based on thin plate splines
verfasst von
Pouria Assari
Salvatore Cuomo
Publikationsdatum
08.12.2018
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2019
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-018-0671-x

Weitere Artikel der Ausgabe 4/2019

Engineering with Computers 4/2019 Zur Ausgabe

Neuer Inhalt