Skip to main content

2016 | OriginalPaper | Buchkapitel

The Operational Perspective: Three Routes

verfasst von : Solomon Feferman

Erschienen in: Advances in Proof Theory

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Let me begin with a few personal words of appreciation, since Gerhard Jäger is one of my most valued friends and long time collaborators.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Let me also take this opportunity to thank Thomas Strahm and Thomas Studer for organizing the December 2014 meeting in honor of Gerhard Jäger, and for arranging for me to participate via Skype since I was unable to attend in person.
 
2
There are several possible formulations of the definition by cases operator. In the one originally taken in [23], sometimes called definition by cases on V, this takes the form d xyuv = (x if \(u=v\), else y). However, when added to the axioms for k and s, extensionality is inconsistent for operations. More restrictive versions have subsequently been used, mainly definition by cases on the natural numbers, allowing both extensionality and totality of operations; cf. [59].
 
3
First steps in that direction had already been made in [19] via the system IR. For subsequent explorations cf. [20, 22, 26].
 
4
In [25] I also examined T\(_{0}\) within intuitionistic logic.
 
5
The scheme ECA can be finitely axiomatized by adding constants for the identity relation, the first-order logical operations for negation, conjunction, existential quantification, and inverse image of a class under an operation.
 
6
There is a difference in terminology, though: Jäger used ‘types’ for our classes.
 
7
In certain subsystems of T\(_{1}\) with restricted induction we need to add to the (\(\upmu )\) axiom that if \({\upmu }f \in \) N then\( f \in \) (N \(\rightarrow \) N).
 
8
Parts of T\(_{0}\) relate to Aczel’s Frege structures and Martin-Löf’s constructive theory of types; cf. for example, Beeson [5], Chaps. XI and XVII. But neither of these approaches goes on to the adjunction of non-constructive functional operators like \(\mu \) (or E\(_{0})\) and E\(_{1}\).
 
9
For the proof theory of systems of explicit mathematics with \({\mathbf {E}}_{1}\) see Jäger and Strahm [60] and Jäger and Probst [58].
 
10
Then Jäger [47] and Avigad [3] showed that they are of the same proof-theoretical strength, by proof-theoretical methods, the first via theories of iterated admissible sets without foundation and the second via fixed point theories.
 
11
In Sect. 4 below I conjecture that the unfolding of a suitable subsystem of T\(_{0}\) is equivalent in strength to predicative analysis.
 
12
Recently, Sato [74] has shown how to establish the reduction of \(\Delta ^{1}_{2}\) − CA + BI to T\(_{0}\) without going through the ordinal notation system for \(\kappa \).
 
13
Another interesting group of questions concerns the strength over T\(_{0}\) (or its restricted version \(\text {T}_0{\upharpoonright }\)) of the principle MID that I introduced in [27]. That expresses that if f is any monotone operation from classes to classes then f has a least fixed point. Takahashi [80] showed that \(\text {T}_0\) + MID is interpretable in \(\Pi ^1_2\) − CA + BI, and then Rathjen [69] showed that it is much stronger than T\(_{0}\). Next, exact strength of \(\text {T}_0{\upharpoonright }\) + MID was determined by Glass et al. [42]. A series of further results by Rathjen for the strength of \(\text {T}_0\) + MID and \(\text {T}_0\) + UMID, where UMID is a natural uniform version of the principle, are surveyed in the paper Rathjen [70].
 
14
To explain some anomalies of the dates of subsequent work on this subject, it should be noted that my 2009 paper was submitted to the journal Information and Control in December 2006 and in revised form in April 2008. In the meantime, Jäger [50] had appeared and so I could refer to it in that revised version.
 
15
Further important work is contained in Zumbrunnen [87] and Sato and Zumbrunnen [75]. Constructive operational theories of sets have been treated by Cantini and Crosilla [12, 13] and Cantini [11].
 
16
Rathjen [71] uses (Pow(P)) for our formulation in the language of KP as well, in order to distinguish it from the usual power set axiom formulated without the additional constant. It would have been better to do that in [34], but not having done so I here follow the notation from there.
 
17
An earlier such result for the system with a restricted form of set induction is due to Mathias [66].
 
18
However, I did say that I had not checked the details. In fact, I hadn’t thought them through at all.
 
19
Cf. Footnote 2.
 
20
Since referred to as KF in the literature.
 
21
This follows the proposed formulation of U(NFA) via a truth predicate in Feferman [31, p. 14].
 
22
Ulrik Buchholtz originally thought that \(\uppsi (\Gamma _{\Omega +1})\) is the same as the ordinal H(1) of Bachmann [4]. This seemed to be supported by Aczel [1] who wrote (p. 36) that H(1) may have proof theoretical significance related to those of the ordinals \(\varepsilon \), \(\Gamma _{0}\) and \(\upvarphi \varepsilon _{\Omega +1}\)0. And Miller [67, p. 451] had conjectured that “H(1) [is] the proof-theoretic ordinal of ID\(_{1}\)* which is related to ID\(_{1}\) as predicative analysis ID\(_{0}\)* is to first-order arithmetic ID\(_{0}\).” However, Wilfried Buchholz recently found that the above representation of H(1) in terms of the \(\uppsi \) function is incorrect. This suggests one should revisit the bases of Aczel’s and Miller’s conjectures.
 
23
Alternatively, one can of course work with the formulation of explicit mathematics in terms of the representation relation \(\mathfrak {R}(x\), X).
 
24
This would provide another answer to the question of finding a system of explicit mathematics of the same strength as predicative analysis.
 
Literatur
2.
Zurück zum Zitat P. Aczel, W. Richter, in Inductive definitions and analogues of large cardinals, Conference in Mathematical Logic, London ’70, Lecture Notes in Mathematics, vol. 255, ed by W. Hodges (1972), pp. 1–9 P. Aczel, W. Richter, in Inductive definitions and analogues of large cardinals, Conference in Mathematical Logic, London ’70, Lecture Notes in Mathematics, vol. 255, ed by W. Hodges (1972), pp. 1–9
3.
Zurück zum Zitat J. Avigad, On the relationship between ATR\(_{0}\) and \(\widehat{ID}_{<\omega }\), J. Symbolic Logic 61, 768–779 (1996) J. Avigad, On the relationship between ATR\(_{0}\) and \(\widehat{ID}_{<\omega }\), J. Symbolic Logic 61, 768–779 (1996)
4.
Zurück zum Zitat H. Bachmann, Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordnungszahlen. Vierteljschr. Naturforsch. Ges. Zürich 95, 115–147 (1950)MathSciNetMATH H. Bachmann, Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordnungszahlen. Vierteljschr. Naturforsch. Ges. Zürich 95, 115–147 (1950)MathSciNetMATH
5.
Zurück zum Zitat M.J. Beeson, Foundations of Constructive Mathematics. Metamathematical Studies (Springer, Berlin, 1985) M.J. Beeson, Foundations of Constructive Mathematics. Metamathematical Studies (Springer, Berlin, 1985)
7.
Zurück zum Zitat E. Bishop, Foundations of Constructive Analysis (McGraw Hill, New York, 1967)MATH E. Bishop, Foundations of Constructive Analysis (McGraw Hill, New York, 1967)MATH
10.
Zurück zum Zitat U. Buchholtz, G. Jäger, T. Strahm, Theories of Proof-Theoretic Strength \(\psi (\Gamma \) \(_{\Omega +1})\) (2014). In: Probst, D. and Schuster, P. Concepts of Proof in Mathematics, Philosophy, and ComputerScience. De Gruyter (In Press) U. Buchholtz, G. Jäger, T. Strahm, Theories of Proof-Theoretic Strength \(\psi (\Gamma \) \(_{\Omega +1})\) (2014). In: Probst, D. and Schuster, P. Concepts of Proof in Mathematics, Philosophy, and ComputerScience. De Gruyter (In Press)
11.
12.
Zurück zum Zitat A. Cantini, L. Crosilla (2008), Constructive set theory with operations, in Logic Colloquium ed. by A. Andretta et al., Lecture Notes in Logic, vol. 29 (2004), pp. 47–83 A. Cantini, L. Crosilla (2008), Constructive set theory with operations, in Logic Colloquium ed. by A. Andretta et al., Lecture Notes in Logic, vol. 29 (2004), pp. 47–83
13.
Zurück zum Zitat A. Cantini, L. Crosilla, Elementary constructive operational set theory, in Ways of Proof Theory, ed. by R. Schindler (Ontos Verlag, Frankfurt, 2010), pp. 199–240 A. Cantini, L. Crosilla, Elementary constructive operational set theory, in Ways of Proof Theory, ed. by R. Schindler (Ontos Verlag, Frankfurt, 2010), pp. 199–240
16.
Zurück zum Zitat S. Eberhard, T. Strahm, Towards the unfolding of feasible arithmetic (Abstract). Bull. Symbolic Logic 18, 474–475 (2012) S. Eberhard, T. Strahm, Towards the unfolding of feasible arithmetic (Abstract). Bull. Symbolic Logic 18, 474–475 (2012)
17.
Zurück zum Zitat S. Eberhard, T. Strahm, Unfolding feasible arithmetic and weak truth, in Unifying the Philosopy of Truth, ed. by T. Achourioti, et al. (Springer, Berlin, 2015) S. Eberhard, T. Strahm, Unfolding feasible arithmetic and weak truth, in Unifying the Philosopy of Truth, ed. by T. Achourioti, et al. (Springer, Berlin, 2015)
20.
Zurück zum Zitat S. Feferman, Autonomous transfinite progressions and the extent of predicative mathematics, in Logic, Methodology, and Philosophy of Science III, ed. by B. van Rootselaar, J.F. Staal (North-Holland, Amsterdam, 1968), pp. 121–135CrossRef S. Feferman, Autonomous transfinite progressions and the extent of predicative mathematics, in Logic, Methodology, and Philosophy of Science III, ed. by B. van Rootselaar, J.F. Staal (North-Holland, Amsterdam, 1968), pp. 121–135CrossRef
21.
Zurück zum Zitat S. Feferman, Ordinals and functionals in proof theory, in Actes du Congrès International des Mathématiciens (Nice) 1970, vol. 1 (Gauthier-Villars, Paris, (1971) pp. 229–233 S. Feferman, Ordinals and functionals in proof theory, in Actes du Congrès International des Mathématiciens (Nice) 1970, vol. 1 (Gauthier-Villars, Paris, (1971) pp. 229–233
22.
Zurück zum Zitat S. Feferman, Predicatively reducible systems of set theory, in Axiomatic Set Theory ed. by D. Scott, Proceedings of Symposia in Pure Mathematics. XIII, Part 2 (American. Mathematical Society, Providence, 1974), pp. 11–32 S. Feferman, Predicatively reducible systems of set theory, in Axiomatic Set Theory ed. by D. Scott, Proceedings of Symposia in Pure Mathematics. XIII, Part 2 (American. Mathematical Society, Providence, 1974), pp. 11–32
23.
Zurück zum Zitat S. Feferman, A language and axioms for explicit mathematics, in Algebra and Logic ed. by J. Crossley, Lecture Notes in Mathematics, vol. 450 (1975), pp. 87–139 S. Feferman, A language and axioms for explicit mathematics, in Algebra and Logic ed. by J. Crossley, Lecture Notes in Mathematics, vol. 450 (1975), pp. 87–139
24.
Zurück zum Zitat S. Feferman, Theories of finite type related to mathematical practice, in Handbook of Mathematical Logic, ed. by J. Barwise (North-Holland, Amsterdam, 1977), pp. 913–971CrossRef S. Feferman, Theories of finite type related to mathematical practice, in Handbook of Mathematical Logic, ed. by J. Barwise (North-Holland, Amsterdam, 1977), pp. 913–971CrossRef
25.
Zurück zum Zitat S. Feferman, Constructive theories of functions and classes, in Logic Colloquium ’78, ed. by M. Boffa, et al. (North-Holland, Amsterdam, 1979), pp. 159–224 S. Feferman, Constructive theories of functions and classes, in Logic Colloquium ’78, ed. by M. Boffa, et al. (North-Holland, Amsterdam, 1979), pp. 159–224
26.
Zurück zum Zitat S. Feferman, A more perspicuous formal system for predicativity, in Konstruktionen versus Positionen I, ed. by K. Lorenz (Walter de Gruyter, Berlin, 1979), pp. 68–93 S. Feferman, A more perspicuous formal system for predicativity, in Konstruktionen versus Positionen I, ed. by K. Lorenz (Walter de Gruyter, Berlin, 1979), pp. 68–93
27.
Zurück zum Zitat S. Feferman, Monotone inductive definitions, in The L. E. J. Brouwer Centenary Symposium, ed. by A.S. Troelstra, D. van Dalen (North-Holland, Amsterdam, 1982), pp. 77–89 S. Feferman, Monotone inductive definitions, in The L. E. J. Brouwer Centenary Symposium, ed. by A.S. Troelstra, D. van Dalen (North-Holland, Amsterdam, 1982), pp. 77–89
28.
Zurück zum Zitat S. Feferman, Weyl vindicated: Das Kontinuum 70 years later, in Temi e prospettive della logica e della filosofia della scienza contemporanee, vol. I (CLUEB, Bologna, 1988), pp. 59–93; reprinted in Feferman [32], pp. 249–283 S. Feferman, Weyl vindicated: Das Kontinuum 70 years later, in Temi e prospettive della logica e della filosofia della scienza contemporanee, vol. I (CLUEB, Bologna, 1988), pp. 59–93; reprinted in Feferman [32], pp. 249–283
30.
Zurück zum Zitat S. Feferman, Why a little bit goes a long way: logical foundations of scientifically applicable mathematics, in PSA 1992, vol. II (1993), pp. 442–455; reprinted in Feferman [32], pp. 284–298 S. Feferman, Why a little bit goes a long way: logical foundations of scientifically applicable mathematics, in PSA 1992, vol. II (1993), pp. 442–455; reprinted in Feferman [32], pp. 284–298
31.
Zurück zum Zitat S. Feferman, Gödel’s program for new axioms: why, where, how and what?, in Gödel ’96, ed. by P. Hájek, Lecture Notes in Logic vol. 6 (1996), pp. 3–22 S. Feferman, Gödel’s program for new axioms: why, where, how and what?, in Gödel ’96, ed. by P. Hájek, Lecture Notes in Logic vol. 6 (1996), pp. 3–22
32.
Zurück zum Zitat S. Feferman, In the Light of Logic (Oxford University Press, New York, 1998)MATH S. Feferman, In the Light of Logic (Oxford University Press, New York, 1998)MATH
36.
Zurück zum Zitat S. Feferman, G. Jäger, Choice principles, the bar rule and autonomously iterated comprehension schemes in analysis. J. Symbolic Logic 48, 63–70 (1983)MathSciNetCrossRefMATH S. Feferman, G. Jäger, Choice principles, the bar rule and autonomously iterated comprehension schemes in analysis. J. Symbolic Logic 48, 63–70 (1983)MathSciNetCrossRefMATH
37.
Zurück zum Zitat S. Feferman, G. Jäger, Systems of explicit mathematics with non-constructive \(\mu \)-operator I. Ann. Pure Appl. Logic 65, 243–263 (1993)MathSciNetCrossRefMATH S. Feferman, G. Jäger, Systems of explicit mathematics with non-constructive \(\mu \)-operator I. Ann. Pure Appl. Logic 65, 243–263 (1993)MathSciNetCrossRefMATH
38.
Zurück zum Zitat S. Feferman, G. Jäger, Systems of explicit mathematics with non-constructive \(\mu \)-operator II. Ann. Pure Appl. Logic 79, 37–52 (1996)MathSciNetCrossRefMATH S. Feferman, G. Jäger, Systems of explicit mathematics with non-constructive \(\mu \)-operator II. Ann. Pure Appl. Logic 79, 37–52 (1996)MathSciNetCrossRefMATH
41.
Zurück zum Zitat H. Friedman, K. McAloon, S.G. Simpson, A finite combinatorial principle which is equivalent to the 1-consistency of predicative analysis, in Patras Logic Symposion, ed. by G. Metakides (North-Holland, Amsterdam, 1982), pp. 197–230CrossRef H. Friedman, K. McAloon, S.G. Simpson, A finite combinatorial principle which is equivalent to the 1-consistency of predicative analysis, in Patras Logic Symposion, ed. by G. Metakides (North-Holland, Amsterdam, 1982), pp. 197–230CrossRef
42.
Zurück zum Zitat T. Glass, M. Rathjen, A. Schlüter, On the proof-theoretic strength of monotone induction in explicit mathematics. Ann. Pure Appl. Logic 85, 1–46 (1997)MathSciNetCrossRefMATH T. Glass, M. Rathjen, A. Schlüter, On the proof-theoretic strength of monotone induction in explicit mathematics. Ann. Pure Appl. Logic 85, 1–46 (1997)MathSciNetCrossRefMATH
43.
Zurück zum Zitat T. Glass, T. Strahm, Systems of explicit mathematics with non-constructive \(\mu \)-operator and join. Ann. Pure Appl. Logic 82, 193–219 (1996)MathSciNetCrossRefMATH T. Glass, T. Strahm, Systems of explicit mathematics with non-constructive \(\mu \)-operator and join. Ann. Pure Appl. Logic 82, 193–219 (1996)MathSciNetCrossRefMATH
44.
Zurück zum Zitat K. Gödel, What is Cantor’s continuum problem? Amer. Math. Monthly 54, 515–525 (1947); errata 55, 151; reprinted in Gödel (1990), 176–187 K. Gödel, What is Cantor’s continuum problem? Amer. Math. Monthly 54, 515–525 (1947); errata 55, 151; reprinted in Gödel (1990), 176–187
45.
Zurück zum Zitat K. Gödel, in Collected Works, Vol. II. Publications 1938–1974, ed. by S. Feferman, et al. (Oxford University Press, New York, 1990) K. Gödel, in Collected Works, Vol. II. Publications 1938–1974, ed. by S. Feferman, et al. (Oxford University Press, New York, 1990)
46.
Zurück zum Zitat G. Jäger, A well-ordering proof for Feferman’s theory T\(_{0}\). Archiv für mathematische Logik und Grundlagenforschung 23, 65–77 (1983)CrossRefMATH G. Jäger, A well-ordering proof for Feferman’s theory T\(_{0}\). Archiv für mathematische Logik und Grundlagenforschung 23, 65–77 (1983)CrossRefMATH
48.
Zurück zum Zitat G. Jäger, Theories for admissible sets: a unifying approach to proof theory, in Studies in Proof Theory, vol. 2 (Bibliopolis, Naples, 1986) G. Jäger, Theories for admissible sets: a unifying approach to proof theory, in Studies in Proof Theory, vol. 2 (Bibliopolis, Naples, 1986)
49.
Zurück zum Zitat G. Jäger, Induction in the elementary theory of types and names, in Computer Science Logic ’87, ed. by E. Börger, et al., Lecture Notes in Computer Science, vol. 329 (1988), pp. 118–128 G. Jäger, Induction in the elementary theory of types and names, in Computer Science Logic ’87, ed. by E. Börger, et al., Lecture Notes in Computer Science, vol. 329 (1988), pp. 118–128
51.
Zurück zum Zitat G. Jäger, Full operational set theory with unbounded existential quantification and power set. Ann. Pure Appl. Logic 160, 33–52 (2009)MathSciNetCrossRefMATH G. Jäger, Full operational set theory with unbounded existential quantification and power set. Ann. Pure Appl. Logic 160, 33–52 (2009)MathSciNetCrossRefMATH
52.
Zurück zum Zitat G. Jäger, Operations, sets and classes, in Logic, Methodology and Philosophy of Science: Proceedings of the Thirteenth International Congress, ed. by C. Glymour et al. (College Publications, London, 2009), pp. 74–96 G. Jäger, Operations, sets and classes, in Logic, Methodology and Philosophy of Science: Proceedings of the Thirteenth International Congress, ed. by C. Glymour et al. (College Publications, London, 2009), pp. 74–96
54.
Zurück zum Zitat G. Jäger, Relativizing Operational Set Theory (2015). (In preparation) G. Jäger, Relativizing Operational Set Theory (2015). (In preparation)
55.
Zurück zum Zitat G. Jäger, R. Kahle, T. Strahm, On applicative theories, in Logic and Foundations of Mathematics, ed. by A. Cantini, et al. (Kluwer, Dordrecht, 1999), pp. 83–92 G. Jäger, R. Kahle, T. Strahm, On applicative theories, in Logic and Foundations of Mathematics, ed. by A. Cantini, et al. (Kluwer, Dordrecht, 1999), pp. 83–92
56.
Zurück zum Zitat G. Jäger, J. Krähenbuhl, \(\Sigma \) \(^{1}\) \(_{1 }\)choice in a theory of sets and classes, in Ways of Proof, ed. by R. Schindler (Ontos Verlag, Frankfurt, 2010), pp. 283–314 G. Jäger, J. Krähenbuhl, \(\Sigma \) \(^{1}\) \(_{1 }\)choice in a theory of sets and classes, in Ways of Proof, ed. by R. Schindler (Ontos Verlag, Frankfurt, 2010), pp. 283–314
57.
Zurück zum Zitat G. Jäger, W. Pohlers, Eine beweistheoretische Untersuchung von \(\Delta \) \(^{1}\) \(_{2}\)-CA + BI und verwandter Systeme in (Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse (1982), pp. 1–28 G. Jäger, W. Pohlers, Eine beweistheoretische Untersuchung von \(\Delta \) \(^{1}\) \(_{2}\)-CA + BI und verwandter Systeme in (Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse (1982), pp. 1–28
58.
Zurück zum Zitat G. Jäger, D. Probst, The Suslin operator in applicative theories: its proof-theoretic analysis via ordinal theories. Ann. Pure Appl. Logic 162, 647–660 (2011)MathSciNetCrossRefMATH G. Jäger, D. Probst, The Suslin operator in applicative theories: its proof-theoretic analysis via ordinal theories. Ann. Pure Appl. Logic 162, 647–660 (2011)MathSciNetCrossRefMATH
60.
Zurück zum Zitat G. Jäger, T. Strahm, The proof-theoretic analysis of the Suslin operator in applicative theories, in Reflections on the Foundations of Mathematics: Essays in Honor of Solomon Feferman, ed. by W. Sieg, R. Sommer, C. Talcott (AK Peters Ltd, Natick, MA, 2002), pp. 270–292 G. Jäger, T. Strahm, The proof-theoretic analysis of the Suslin operator in applicative theories, in Reflections on the Foundations of Mathematics: Essays in Honor of Solomon Feferman, ed. by W. Sieg, R. Sommer, C. Talcott (AK Peters Ltd, Natick, MA, 2002), pp. 270–292
61.
Zurück zum Zitat G. Jäger, R. Zumbrunnen, About the strength of operational regularity, in Logic, Construction, Computation, ed. by U. Berger, et al. (Ontos Verlag, Frankfurt, 2012), pp. 305–324 G. Jäger, R. Zumbrunnen, About the strength of operational regularity, in Logic, Construction, Computation, ed. by U. Berger, et al. (Ontos Verlag, Frankfurt, 2012), pp. 305–324
62.
Zurück zum Zitat G. Kreisel, Mathematical logic, in Lectures on Modern Mathematics, vol. III ed. by T.L. Saaty (Wiley, New York, 1965), pp. 95–195 G. Kreisel, Mathematical logic, in Lectures on Modern Mathematics, vol. III ed. by T.L. Saaty (Wiley, New York, 1965), pp. 95–195
63.
Zurück zum Zitat G. Kreisel, Principles of proof and ordinals implicit in given concepts, in Intuitionism and Proof Theory, ed. by A. Kino, et al. (North-Holland, Amsterdam, 1970), pp. 489–516 G. Kreisel, Principles of proof and ordinals implicit in given concepts, in Intuitionism and Proof Theory, ed. by A. Kino, et al. (North-Holland, Amsterdam, 1970), pp. 489–516
65.
Zurück zum Zitat M. Marzetta, T. Strahm, The \(\mu \) quantification operator in explicit mathematics with universes and iterated fixed point theories with ordinals. Arch. Math. Logic 37, 391–413 (1988)MathSciNetCrossRefMATH M. Marzetta, T. Strahm, The \(\mu \) quantification operator in explicit mathematics with universes and iterated fixed point theories with ordinals. Arch. Math. Logic 37, 391–413 (1988)MathSciNetCrossRefMATH
68.
Zurück zum Zitat W. Pohlers, Subsystems of set theory and second order number theory, in Handbook of Proof Theory, ed. by S. Buss (North-Holland, Amsterdam, 1998), pp. 209–335CrossRef W. Pohlers, Subsystems of set theory and second order number theory, in Handbook of Proof Theory, ed. by S. Buss (North-Holland, Amsterdam, 1998), pp. 209–335CrossRef
69.
Zurück zum Zitat M. Rathjen, Monotone inductive definitions in explicit mathematics, J. Symbolic Logic 61, 125–146 (1996) M. Rathjen, Monotone inductive definitions in explicit mathematics, J. Symbolic Logic 61, 125–146 (1996)
70.
Zurück zum Zitat M. Rathjen, Explicit mathematics with monotone inductive definitions: a survey, in Reflections on the Foundations of Mathematics, ed. by W. Sieg, et al. (1998), pp. 329–346. Second printing, Lecture Notes in Logic, vol. 15 (2002) M. Rathjen, Explicit mathematics with monotone inductive definitions: a survey, in Reflections on the Foundations of Mathematics, ed. by W. Sieg, et al. (1998), pp. 329–346. Second printing, Lecture Notes in Logic, vol. 15 (2002)
71.
Zurück zum Zitat M. Rathjen, Relativized ordinal analysis, The case of Power Kripke-Platek set theory. Ann. Pure Appl. Logic 165, 316–339 (2014)MathSciNetCrossRefMATH M. Rathjen, Relativized ordinal analysis, The case of Power Kripke-Platek set theory. Ann. Pure Appl. Logic 165, 316–339 (2014)MathSciNetCrossRefMATH
73.
Zurück zum Zitat W. Richter, P. Aczel, Inductive definitions and reflecting properties of admissible ordinals, in Generalized Recursion Theory, ed. by J.E. Fenstad, P.G. Hinman (North-Holland, Amsterdam, 1974), pp. 301–381 W. Richter, P. Aczel, Inductive definitions and reflecting properties of admissible ordinals, in Generalized Recursion Theory, ed. by J.E. Fenstad, P.G. Hinman (North-Holland, Amsterdam, 1974), pp. 301–381
74.
Zurück zum Zitat K. Sato, A new model construction by making a detour via intuitionistic theories II, in Interpretability lower bound of Feferman’s Explicit Mathematics T\(_{0}\) (t.a.) (2014) K. Sato, A new model construction by making a detour via intuitionistic theories II, in Interpretability lower bound of Feferman’s Explicit Mathematics T\(_{0}\) (t.a.) (2014)
76.
Zurück zum Zitat K. Schütte, Eine Grenze für die Beweisbarkeit der transfiniten Induktion in der verzweigten Typenlogik. Archiv für mathematische Logik und Grundlagenforschung 7, 45–60 (1965)MathSciNetCrossRefMATH K. Schütte, Eine Grenze für die Beweisbarkeit der transfiniten Induktion in der verzweigten Typenlogik. Archiv für mathematische Logik und Grundlagenforschung 7, 45–60 (1965)MathSciNetCrossRefMATH
77.
Zurück zum Zitat S.G. Simpson, Subsystems of second order arithmetic, in Perspectives in Logic, (Springer, Berlin, 1988) 2nd edn. 2009 S.G. Simpson, Subsystems of second order arithmetic, in Perspectives in Logic, (Springer, Berlin, 1988) 2nd edn. 2009
78.
Zurück zum Zitat S.G. Simpson, Predicativity: the outer limits, in Reflections on the Foundations of Mathematics ed. by W. Sieg, et al. (1998), pp. 130–136; 2nd printing, Lecture Notes in Logic vol. 15 (2002) S.G. Simpson, Predicativity: the outer limits, in Reflections on the Foundations of Mathematics ed. by W. Sieg, et al. (1998), pp. 130–136; 2nd printing, Lecture Notes in Logic vol. 15 (2002)
79.
Zurück zum Zitat S.G. Simpson, The Gödel hierarchy and reverse mathematics, in Kurt Gödel. Essays for his Centennial, ed. by S. Feferman, et al. Lecture Notes in Logic, vol. 33 (2010) pp. 109–127 S.G. Simpson, The Gödel hierarchy and reverse mathematics, in Kurt Gödel. Essays for his Centennial, ed. by S. Feferman, et al. Lecture Notes in Logic, vol. 33 (2010) pp. 109–127
80.
Zurück zum Zitat S. Takahashi, Monotone inductive definitions in a constructive theory of functions and classes. Ann. Pure Appl. Logic 42, 255–297 (1989)MathSciNetCrossRefMATH S. Takahashi, Monotone inductive definitions in a constructive theory of functions and classes. Ann. Pure Appl. Logic 42, 255–297 (1989)MathSciNetCrossRefMATH
81.
Zurück zum Zitat W.W. Tait, Constructive reasoning, in Logic, Methodology and Philosophy of Science III (North-Holland, Amsterdam, 1981), pp. 185–199; reprinted in Tait [82], pp. 21–42 W.W. Tait, Constructive reasoning, in Logic, Methodology and Philosophy of Science III (North-Holland, Amsterdam, 1981), pp. 185–199; reprinted in Tait [82], pp. 21–42
82.
Zurück zum Zitat W.W. Tait, The Provenance of Pure Reason (Oxford University Press, New York, 2005)MATH W.W. Tait, The Provenance of Pure Reason (Oxford University Press, New York, 2005)MATH
83.
Zurück zum Zitat J. van Heijenoort (ed.), From Frege to Gödel, A source book in mathematical logic (Harvard Univ. Press, Cambridge, 1967) J. van Heijenoort (ed.), From Frege to Gödel, A source book in mathematical logic (Harvard Univ. Press, Cambridge, 1967)
84.
Zurück zum Zitat J. von Neumann, Eine Axiomatisierung derMengenlehre, J. für die reine und angewandte Mathematik 154, 219–240 (1925); English translation in van Heijenoort [83], pp. 393–413 J. von Neumann, Eine Axiomatisierung derMengenlehre, J. für die reine und angewandte Mathematik 154, 219–240 (1925); English translation in van Heijenoort [83], pp. 393–413
85.
Zurück zum Zitat H. Weyl, Das Kontinuum. Kritische Untersuchungen über die Grundlagen der Analysis (Veit, Leipzig, 1918) H. Weyl, Das Kontinuum. Kritische Untersuchungen über die Grundlagen der Analysis (Veit, Leipzig, 1918)
86.
Zurück zum Zitat E. Zermelo, Untersuchungen über die Grundlagen der Mengenlehre I, Mathematische Annalen 65, 261–281 (1908). English translation in van Heijenoort 1967, pp. 199–215 E. Zermelo, Untersuchungen über die Grundlagen der Mengenlehre I, Mathematische Annalen 65, 261–281 (1908). English translation in van Heijenoort 1967, pp. 199–215
Metadaten
Titel
The Operational Perspective: Three Routes
verfasst von
Solomon Feferman
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-29198-7_7