Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 12/2020

07.05.2020

The optimization of contact interface between metal/MoS2 FETs by oxygen plasma treatment

verfasst von: Yadong Zhang, Kunpeng Jia, Jiangtao Liu, Yu Pan, Kun Luo, Jiahan Yu, Yongkui Zhang, Hanmin Tian, Zhenhua Wu, Huaxiang Yin

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The quality of the contact is key for the performance enhancement of the MoS2 device. As the oxygen plasma treatment is developed in the fabrication of MoS2 field effect transistor (FET), we demonstrate that the tunneling layer (MoO3) is formed on the top of the MoS2 contact region and the process induced organic residues in the source and drain regions is effectively removed. The formation of MoO3 can degrade the Fermi level pinning effect at the MoS2/metal interface and lowering the Schottky barrier height. And the flatness of the interface has been greatly improved, with the roughness reduced from 0.53 to 0.166 nm. In this paper, we improve the device performance with an on-/off-current ratio increase by four orders of magnitude, a mobility increase by 10 times at room temperature and the 33-fold decrease in contact resistance. This research shows that oxygen plasma treatment is a promising method for the integration of MoS2 FET in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef
2.
Zurück zum Zitat F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRef F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRef
3.
Zurück zum Zitat R. Zhang, Z. Wu, X.J. Li et al., Aharonov-Bohm effect in monolayer phosphorene nanorings. Phys. Rev. B 95(12), 125418 (2017)CrossRef R. Zhang, Z. Wu, X.J. Li et al., Aharonov-Bohm effect in monolayer phosphorene nanorings. Phys. Rev. B 95(12), 125418 (2017)CrossRef
4.
Zurück zum Zitat M.Y. Li, S.K. Su, H.P. Wong et al., How 2D semiconductors could extend Moore’s law. Nature 567(7747), 169–170 (2019)CrossRef M.Y. Li, S.K. Su, H.P. Wong et al., How 2D semiconductors could extend Moore’s law. Nature 567(7747), 169–170 (2019)CrossRef
5.
Zurück zum Zitat Z.Z. Zhang, Z.H. Wu, K. Chang et al., Resonant tunneling through S- and U-shaped graphene nanoribbons. Nanotechnology 20(41), 415203 (2009)CrossRef Z.Z. Zhang, Z.H. Wu, K. Chang et al., Resonant tunneling through S- and U-shaped graphene nanoribbons. Nanotechnology 20(41), 415203 (2009)CrossRef
6.
Zurück zum Zitat F. Schwierz, J. Pezoldt, R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7(18), 8261–8283 (2015)CrossRef F. Schwierz, J. Pezoldt, R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7(18), 8261–8283 (2015)CrossRef
7.
Zurück zum Zitat S. Guo, Y. Zhang, Y. Ge et al., 2D V-V binary materials: status and challenges. Adv. Mater. 31(39), e1902352 (2019)CrossRef S. Guo, Y. Zhang, Y. Ge et al., 2D V-V binary materials: status and challenges. Adv. Mater. 31(39), e1902352 (2019)CrossRef
8.
Zurück zum Zitat S. Najmaei, Z. Liu, P.M. Ajayan et al., Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl. Phys. Lett. 100(1), 013106 (2012)CrossRef S. Najmaei, Z. Liu, P.M. Ajayan et al., Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl. Phys. Lett. 100(1), 013106 (2012)CrossRef
9.
Zurück zum Zitat H. Liu, A.T. Neal, Y.C. Du et al., Fundamentals in MoS2 transistors: dielectric, scaling and metal contacts. ECS Trans. 58(7), 203–208 (2013)CrossRef H. Liu, A.T. Neal, Y.C. Du et al., Fundamentals in MoS2 transistors: dielectric, scaling and metal contacts. ECS Trans. 58(7), 203–208 (2013)CrossRef
10.
Zurück zum Zitat H. Liu, A.T. Neal, P.D. Ye, Channel length scaling of MoS2 MOSFETs. ACS Nano 6(10), 8563–8569 (2012)CrossRef H. Liu, A.T. Neal, P.D. Ye, Channel length scaling of MoS2 MOSFETs. ACS Nano 6(10), 8563–8569 (2012)CrossRef
11.
Zurück zum Zitat A. Rai, H. Movva, A. Roy et al., Progress in contact, doping and mobility engineering of MoS2: an atomically thin 2D semiconductor. Crystals 8(8), 316 (2018)CrossRef A. Rai, H. Movva, A. Roy et al., Progress in contact, doping and mobility engineering of MoS2: an atomically thin 2D semiconductor. Crystals 8(8), 316 (2018)CrossRef
12.
Zurück zum Zitat J. Pei, J. Yang, T. Yildirim et al., Many-body complexes in 2D semiconductors. Adv. Mater. 31(2), e1706945 (2019)CrossRef J. Pei, J. Yang, T. Yildirim et al., Many-body complexes in 2D semiconductors. Adv. Mater. 31(2), e1706945 (2019)CrossRef
13.
Zurück zum Zitat Z. Huang, W. Han, H. Tang et al., Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2(3), 035011 (2015)CrossRef Z. Huang, W. Han, H. Tang et al., Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2(3), 035011 (2015)CrossRef
14.
Zurück zum Zitat Y. Jiang, L. Miao, G. Jiang et al., Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Sci. Rep. 5, 16372 (2015)CrossRef Y. Jiang, L. Miao, G. Jiang et al., Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Sci. Rep. 5, 16372 (2015)CrossRef
15.
Zurück zum Zitat B. Radisavljevic, A. Radenovic, J. Brivio et al., Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)CrossRef B. Radisavljevic, A. Radenovic, J. Brivio et al., Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)CrossRef
16.
Zurück zum Zitat J.H. Kang, W. Liu, K. Banerjee, High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl. Phys. Lett. 104(9), 093106 (2014)CrossRef J.H. Kang, W. Liu, K. Banerjee, High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl. Phys. Lett. 104(9), 093106 (2014)CrossRef
17.
Zurück zum Zitat C.D. English, G. Shine, V.E. Dorgan et al., Improving Contact Resistance in MoS2 Field Effect Transistors, in 2014 72nd Annual Device Research Conference (Drc), (2014), pp. 193–194 C.D. English, G. Shine, V.E. Dorgan et al., Improving Contact Resistance in MoS2 Field Effect Transistors, in 2014 72nd Annual Device Research Conference (Drc), (2014), pp. 193–194
19.
Zurück zum Zitat X. Cui, E.M. Shih, L.A. Jauregui et al., Low-temperature ohmic contact to monolayer MoS2 by van der waals bonded Co/h-BN electrodes. Nano Lett. 17(8), 4781–4786 (2017)CrossRef X. Cui, E.M. Shih, L.A. Jauregui et al., Low-temperature ohmic contact to monolayer MoS2 by van der waals bonded Co/h-BN electrodes. Nano Lett. 17(8), 4781–4786 (2017)CrossRef
20.
Zurück zum Zitat W. Park, Y. Kim, S.K. Lee et al., Contact resistance reduction using Fermi level de-pinning layer for MoS2 FETs. 2014 IEEE International Electron Devices Meeting (Iedm), (2014) W. Park, Y. Kim, S.K. Lee et al., Contact resistance reduction using Fermi level de-pinning layer for MoS2 FETs. 2014 IEEE International Electron Devices Meeting (Iedm), (2014)
21.
Zurück zum Zitat Y. Liu, J. Guo, E. Zhu et al., Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557(7707), 696–700 (2018)CrossRef Y. Liu, J. Guo, E. Zhu et al., Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557(7707), 696–700 (2018)CrossRef
22.
Zurück zum Zitat C. Gong, L. Colombo, R.M. Wallace et al., The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett. 14(4), 1714–1720 (2014)CrossRef C. Gong, L. Colombo, R.M. Wallace et al., The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett. 14(4), 1714–1720 (2014)CrossRef
23.
Zurück zum Zitat K.-A. Min, J. Park, R.M. Wallace et al., Reduction of Fermi level pinning at Au–MoS2 interfaces by atomic passivation on Au surface. 2D Mater. 4(1): 015019 (2016)CrossRef K.-A. Min, J. Park, R.M. Wallace et al., Reduction of Fermi level pinning at Au–MoS2 interfaces by atomic passivation on Au surface. 2D Mater. 4(1): 015019 (2016)CrossRef
24.
Zurück zum Zitat A.T. Neal, H. Liu, J.J. Gu et al. Metal contacts to MoS2: a two-dimensional semiconductor, in Device Research Conference. (2012) A.T. Neal, H. Liu, J.J. Gu et al. Metal contacts to MoS2: a two-dimensional semiconductor, in Device Research Conference. (2012)
25.
Zurück zum Zitat M.H. Guimaraes, H. Gao, Y. Han et al., Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10(6), 6392–6399 (2016)CrossRef M.H. Guimaraes, H. Gao, Y. Han et al., Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10(6), 6392–6399 (2016)CrossRef
26.
Zurück zum Zitat Y. Liu, H. Nan, X. Wu et al., Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7(5), 4202–4209 (2013)CrossRef Y. Liu, H. Nan, X. Wu et al., Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7(5), 4202–4209 (2013)CrossRef
27.
Zurück zum Zitat N. Kang, H.P. Paudel, M.N. Leuenberger et al., Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C 118(36), 21258–21263 (2014)CrossRef N. Kang, H.P. Paudel, M.N. Leuenberger et al., Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C 118(36), 21258–21263 (2014)CrossRef
28.
Zurück zum Zitat Y. Zhang, J. Liu, Y. Pan et al., The evolution of MoS2 properties under oxygen plasma treatment and its application in MoS2 based devices. J. Mater. Sci.: Mater. Electron. 30(19), 18185–18190 (2019) Y. Zhang, J. Liu, Y. Pan et al., The evolution of MoS2 properties under oxygen plasma treatment and its application in MoS2 based devices. J. Mater. Sci.: Mater. Electron. 30(19), 18185–18190 (2019)
29.
Zurück zum Zitat S. Chuang, C. Battaglia, A. Azcatl et al., MoS2 P-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14(3), 1337–1342 (2014)CrossRef S. Chuang, C. Battaglia, A. Azcatl et al., MoS2 P-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14(3), 1337–1342 (2014)CrossRef
30.
Zurück zum Zitat N. Kaushik, D. Karmakar, A. Nipane et al., Interfacial n-doping using an ultrathin TiO2 layer for contact resistance reduction in MoS2. ACS Appl. Mater. Interfaces 8(1), 256–263 (2016)CrossRef N. Kaushik, D. Karmakar, A. Nipane et al., Interfacial n-doping using an ultrathin TiO2 layer for contact resistance reduction in MoS2. ACS Appl. Mater. Interfaces 8(1), 256–263 (2016)CrossRef
31.
Zurück zum Zitat A. Dankert, L. Langouche, M.V. Kamalakar et al., High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts. ACS Nano 8(1), 476–482 (2014)CrossRef A. Dankert, L. Langouche, M.V. Kamalakar et al., High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts. ACS Nano 8(1), 476–482 (2014)CrossRef
32.
Zurück zum Zitat C.S. K, R.C. Longo, R. Addou et al., Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers. Nanotechnology 25(37), 375703 (2014)CrossRef C.S. K, R.C. Longo, R. Addou et al., Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers. Nanotechnology 25(37), 375703 (2014)CrossRef
33.
Zurück zum Zitat A. Castellanos-Gomez, M. Barkelid, A.M. Goossens et al., Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12(6), 3187–3192 (2012)CrossRef A. Castellanos-Gomez, M. Barkelid, A.M. Goossens et al., Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12(6), 3187–3192 (2012)CrossRef
34.
Zurück zum Zitat H. Zhu, X. Qin, L. Cheng et al., Remote plasma oxidation and atomic layer etching of MoS2. ACS Appl. Mater. Interfaces 8(29), 19119–19126 (2016)CrossRef H. Zhu, X. Qin, L. Cheng et al., Remote plasma oxidation and atomic layer etching of MoS2. ACS Appl. Mater. Interfaces 8(29), 19119–19126 (2016)CrossRef
Metadaten
Titel
The optimization of contact interface between metal/MoS2 FETs by oxygen plasma treatment
verfasst von
Yadong Zhang
Kunpeng Jia
Jiangtao Liu
Yu Pan
Kun Luo
Jiahan Yu
Yongkui Zhang
Hanmin Tian
Zhenhua Wu
Huaxiang Yin
Publikationsdatum
07.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 12/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03511-7

Weitere Artikel der Ausgabe 12/2020

Journal of Materials Science: Materials in Electronics 12/2020 Zur Ausgabe

Neuer Inhalt