Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 23/2018

08.10.2018

The optimization of microwave dielectric properties of the Li2ZnTi3O8 ceramic by the phase purity control

verfasst von: Bin Tang, Moke Zhou, Yingxiang Li, Fei Wang, Shuren Zhang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 23/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent reports, the microwave dielectric properties of Li2ZnTi3O8 ceramic deviate largely from the optimal value. In this paper by the Rietveld refinement method, the co-existence of the secondary phases is confirmed which is due to the zinc volatilization. Thus, the excessive ZnO addition is introduced to obtain a high purity Li2ZnTi3O8 phase. Microwave dielectric properties are theoretically calculated to prove the above statement, based on the property indices of these phases. The calculated result is consistent to the measured data, with relative deviation around 5%. The optimized properties make the ceramic a promising ceramic candidate for the microwave applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier Science Publishers, Oxford, 2008), pp. 1–2CrossRef M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier Science Publishers, Oxford, 2008), pp. 1–2CrossRef
2.
Zurück zum Zitat D.W. Wang, D. Zhou, Cold-sintered temperature stable Na0.5Bi0.5MoO4–Li2MoO4 microwave composite ceramics. ACS Sustain. Chem. Eng. 6, 2438–2444 (2018)CrossRef D.W. Wang, D. Zhou, Cold-sintered temperature stable Na0.5Bi0.5MoO4–Li2MoO4 microwave composite ceramics. ACS Sustain. Chem. Eng. 6, 2438–2444 (2018)CrossRef
3.
Zurück zum Zitat S. George, M.T. Sebastian, Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A = Mg, Zn) ceramics. J. Am. Ceram. Soc. 93, 2164–2166 (2010)CrossRef S. George, M.T. Sebastian, Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A = Mg, Zn) ceramics. J. Am. Ceram. Soc. 93, 2164–2166 (2010)CrossRef
4.
Zurück zum Zitat J. Zhang, R.Z. Zuo, Low-temperature fired thermal-stable Li2TiO3–NiO microwave dielectric ceramics. J. Mater. Sci. 27, 7962–7968 (2016) J. Zhang, R.Z. Zuo, Low-temperature fired thermal-stable Li2TiO3–NiO microwave dielectric ceramics. J. Mater. Sci. 27, 7962–7968 (2016)
5.
Zurück zum Zitat C.J. Pei, X.S. Hu, G.G. Yao, H.Q. Yang, Reaction-sintering method for microwave dielectric Li2CoTi3O8 ceramic. Ferroelectrics 505, 4–9 (2016)CrossRef C.J. Pei, X.S. Hu, G.G. Yao, H.Q. Yang, Reaction-sintering method for microwave dielectric Li2CoTi3O8 ceramic. Ferroelectrics 505, 4–9 (2016)CrossRef
6.
Zurück zum Zitat X.P. Lu, Y. Zheng, Correlation of heating rates, crystal structures, and microwave dielectric properties of Li2ZnTi3O8 ceramics. J. Electron. Mater. 44, 4243–4249 (2015)CrossRef X.P. Lu, Y. Zheng, Correlation of heating rates, crystal structures, and microwave dielectric properties of Li2ZnTi3O8 ceramics. J. Electron. Mater. 44, 4243–4249 (2015)CrossRef
7.
Zurück zum Zitat P. Zhang, Y. Wang, J. Liu, Z.K. Song, Y.M. Han, L.X. Li, A high improved quality factor of Li2MgTi3O8 microwave dielectric ceramics system. Mater. Lett. 123, 195–197 (2014)CrossRef P. Zhang, Y. Wang, J. Liu, Z.K. Song, Y.M. Han, L.X. Li, A high improved quality factor of Li2MgTi3O8 microwave dielectric ceramics system. Mater. Lett. 123, 195–197 (2014)CrossRef
8.
Zurück zum Zitat Y. Bao, G.H. Chen, M.Z. Hou, Y. Yang, Z.P. Han, K.N. Deng, Microwave dielectric properties and compatibility with silver of low-fired Li2MgTi3O8 ceramics with Li2O–MgO–B2O3 frit. Trans. Nonferrous Met. Soc. China 23, 3318–3323 (2013)CrossRef Y. Bao, G.H. Chen, M.Z. Hou, Y. Yang, Z.P. Han, K.N. Deng, Microwave dielectric properties and compatibility with silver of low-fired Li2MgTi3O8 ceramics with Li2O–MgO–B2O3 frit. Trans. Nonferrous Met. Soc. China 23, 3318–3323 (2013)CrossRef
9.
Zurück zum Zitat L. Fang, D.J. Chu, H.F. Zhou, X.L. Chen, H. Zhang, B.C. Chang, C.C. Li, Y.D. Qin, X. Huang, Microwave dielectric properties of temperature Li2ZnxCo1–xTi3O8 ceramics. J. Alloys Compd. 509, 8840–8844 (2011)CrossRef L. Fang, D.J. Chu, H.F. Zhou, X.L. Chen, H. Zhang, B.C. Chang, C.C. Li, Y.D. Qin, X. Huang, Microwave dielectric properties of temperature Li2ZnxCo1–xTi3O8 ceramics. J. Alloys Compd. 509, 8840–8844 (2011)CrossRef
10.
Zurück zum Zitat Y.X. Li, H. Li, J.S. Li, B. Tang, S.R. Zhang, H.T. Chen, Y. Wei, Effect of TiO2 ratio on the phase and microwave dielectric properties of Li2ZnTi3+xO8+2x ceramics. J. Electron. Mater. 43, 1107–1111 (2014)CrossRef Y.X. Li, H. Li, J.S. Li, B. Tang, S.R. Zhang, H.T. Chen, Y. Wei, Effect of TiO2 ratio on the phase and microwave dielectric properties of Li2ZnTi3+xO8+2x ceramics. J. Electron. Mater. 43, 1107–1111 (2014)CrossRef
11.
Zurück zum Zitat X.P. Lu, Y. Zheng, B. Zhou, Z.W. Dong, P. Cheng, Microwave dielectric properties of Li2ZnTi3O8 ceramics doped with Bi2O3. Ceram. Int. 39, 9829–9833 (2013)CrossRef X.P. Lu, Y. Zheng, B. Zhou, Z.W. Dong, P. Cheng, Microwave dielectric properties of Li2ZnTi3O8 ceramics doped with Bi2O3. Ceram. Int. 39, 9829–9833 (2013)CrossRef
12.
Zurück zum Zitat G.H. Chen, M.Z. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Silver co-firable Li2ZnTi3O8 microwave dielectric ceramics with LZB glass additive and TiO2 dpant. Int. J. Appl. Ceram. Technol. 10, 492–501 (2013)CrossRef G.H. Chen, M.Z. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Silver co-firable Li2ZnTi3O8 microwave dielectric ceramics with LZB glass additive and TiO2 dpant. Int. J. Appl. Ceram. Technol. 10, 492–501 (2013)CrossRef
13.
Zurück zum Zitat X.B. Liu, H.F. Zhou, X.L. Chen, L. Fang, Phase structure and microwave dielectric properties of (1−x)Li2Zn3Ti4O12–xTiO2 ceramics. J. Alloys Compd. 515, 22–25 (2012)CrossRef X.B. Liu, H.F. Zhou, X.L. Chen, L. Fang, Phase structure and microwave dielectric properties of (1−x)Li2Zn3Ti4O12–xTiO2 ceramics. J. Alloys Compd. 515, 22–25 (2012)CrossRef
14.
Zurück zum Zitat L.X. Pang, D. Zhou, Microwave dielectric properties of low-firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3–CuO addition. J. Am. Ceram. Soc. 93, 3614–3617 (2010)CrossRef L.X. Pang, D. Zhou, Microwave dielectric properties of low-firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3–CuO addition. J. Am. Ceram. Soc. 93, 3614–3617 (2010)CrossRef
15.
Zurück zum Zitat Y.D. Zhang, D. Zhou, Pseudo phase diagram and microwave dielectric properties of Li2O–MgO–TiO2 ternary system. J. Am. Ceram. Soc. 99, 3645–3650 (2016)CrossRef Y.D. Zhang, D. Zhou, Pseudo phase diagram and microwave dielectric properties of Li2O–MgO–TiO2 ternary system. J. Am. Ceram. Soc. 99, 3645–3650 (2016)CrossRef
16.
Zurück zum Zitat S. Yu, B. Tang, S. Zhang, X. Zhang, Temperature stable high-Q microwave dielectric ceramics in (1−x)BaTi4O9–xBaZn2Ti4O11 system. Mater. Lett. 67, 293–295 (2012)CrossRef S. Yu, B. Tang, S. Zhang, X. Zhang, Temperature stable high-Q microwave dielectric ceramics in (1−x)BaTi4O9–xBaZn2Ti4O11 system. Mater. Lett. 67, 293–295 (2012)CrossRef
17.
Zurück zum Zitat S. Yoon, G. Choi, D. Kim, S. Cho, K. Hong, Mixture behavior and microwave dielectric properties of (1−x)CaWO4–xTiO2. J. Eur. Ceram. Soc. 27, 3087–3091 (2007)CrossRef S. Yoon, G. Choi, D. Kim, S. Cho, K. Hong, Mixture behavior and microwave dielectric properties of (1−x)CaWO4–xTiO2. J. Eur. Ceram. Soc. 27, 3087–3091 (2007)CrossRef
18.
Zurück zum Zitat K. Surendran, P. Bijumon, P. Mohanan, M. Sebastian, (1−x)MgAl2O4−xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A 81, 823–826 (2005)CrossRef K. Surendran, P. Bijumon, P. Mohanan, M. Sebastian, (1−x)MgAl2O4−xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A 81, 823–826 (2005)CrossRef
19.
Zurück zum Zitat N. Ichinose, T. Shimada, Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg,Zn]1/3Ta2/3)O3 systems. J. Eur. Ceram. Soc. 26, 1755–1759 (2006)CrossRef N. Ichinose, T. Shimada, Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg,Zn]1/3Ta2/3)O3 systems. J. Eur. Ceram. Soc. 26, 1755–1759 (2006)CrossRef
20.
Zurück zum Zitat B. Fu, Y. Zhang, H. Yue, Microwave dielectric properties of (1−x)ZnTa2O6–xMgNb2O6 ceramics. Ceram. Int. 39, 3789–3793 (2013)CrossRef B. Fu, Y. Zhang, H. Yue, Microwave dielectric properties of (1−x)ZnTa2O6–xMgNb2O6 ceramics. Ceram. Int. 39, 3789–3793 (2013)CrossRef
Metadaten
Titel
The optimization of microwave dielectric properties of the Li2ZnTi3O8 ceramic by the phase purity control
verfasst von
Bin Tang
Moke Zhou
Yingxiang Li
Fei Wang
Shuren Zhang
Publikationsdatum
08.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 23/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0105-y

Weitere Artikel der Ausgabe 23/2018

Journal of Materials Science: Materials in Electronics 23/2018 Zur Ausgabe

Neuer Inhalt